

EMS 619628

OHS 621251

ASSESSMENT				
SITE NAME	Southdown Oil Supplies - Thatcham			
CLIENT	Watson Fuels Limted			
CLIENT REFERENCE	N/A			
DATE	October 2018			
REPORT	R001JP - 13053			

EVENT

GROUNDWATER

MONITORING

REFERENCE

WRITTEN BY

QA/QC BY

AND UPDATED RISK

OHES Environmental Ltd Unit 3 Forest Court Oaklands Park Wokingham Berkshire RG41 2FD

FS 619627

www.ohes.co.uk

Jonathan Pearson Senior Consultant Contaminated Land

Bryan Cherry

Divisional Manager Contaminated Land

CONTENTS

EXECU	TIVE SUMMARY	1
1.0	INTRODUCTION	3
1.1	Context and Purpose	3
1.2	Objectives	Error! Bookmark not defined.
1.3	Guidance and Standards	Error! Bookmark not defined.
1.4	Project Information and Limitations	Error! Bookmark not defined.
1.5	Previous Assessments	3
2.0	PREVIOUS CONCEPTUAL SITE MODEL AND RISK ASSESSMENT	7
2.1	Summary of Contaminant Sources	7
3.0	GROUNDWATER INFORMATION	11
3.1	Monitoring and Sampling Methodology	
3.2	Groundwater Monitoring Data	
4.0	CONTAMINATION ASSESSMENT	
4.1	Evidence of Contamination Encountered	
4.2	Chemical Analysis – Soils	
4.3	Chemical Analysis – Groundwater	
5.0	ENVIRONMENTAL RISK ASSESSMENT	
5.1	Identified Contamination	
5.2	Identified Receptors	
5.3	Identified Pathways	
5.4	Updated Conceptual Site Model	
6.0	CONCLUSIONS AND RECOMMENDATIONS	24
6.1	Conclusions	
6.2	Recommendations	

FIGURES AND APPENDICES

FIGURES AND APPENDICES			
Figures			
Figure 1	Site Layout & Intrusive Location Plan		
Appendices			
Appendix 1	Risk Assessment Methodology and Classifications		
Appendix 2	Groundwater Monitoring Results		
Appendix 3	Chemical Analysis Results		
Appendix 4	Tier 1 Screening Sheets		

REVIEWS AND REVISIONS

REVISION NUMBER	DATE	DETAILS	OHES CONSULTANT

EXECUTIVE SUMMARY

CONTEXT AND OBJECTIVES

OHES Environmental Ltd (OHES) was instructed by Watson Fuels Limited (Watson) (the 'client') to complete an additional groundwater monitoring event and updated risk assessment for the Southdown Oils oil depot site, Thatcham (hereafter referred to as 'the site').

It is understood that Watson are now seeking to sell the freehold of the site and, as such, require a suitable survey of the site to determine current contamination levels and associated risks. Given the level of previous site investigation and the number of monitoring wells that remain on site, OHES considers that an update groundwater monitoring event to incorporate groundwater sample analysis will be appropriate to achieve this objective without the need for further intrusive site investigation.

PREVIOUS CONCEPTUAL SITE MODEL AND RISK ASSESSMENT

Based on the results of the previous phases of investigation, the following key risks were identified at the site:

- * Exceedances of soil saturation limits indicating the potential presence of entrained NAPL within these materials
- Risks to controlled waters (underlying Secondary A Aquifer).

Risks to potential future site users / visitors or ground workers.

WORKS COMPLETED

- One round of groundwater monitoring and sampling was completed on all accessible wells (31No. in total) at the site on 5th September 2018 using an oil / water interface probe and a peristaltic pump.
- ★ 21 No. groundwater samples were scheduled for chemical testing including TPH CWG/Banded TPH, VOCs, SVOCs, and PAHs.
- * 6 No. product samples were scheduled for whole oil analysis.

CONTAMINATION FINDINGS

<u>Soils</u>

Extensive evidence (visual and olfactory) of hydrocarbon contamination was identified in soil during both previous phases of site investigation completed by OHES. Strong odours and staining were noted to persist down to the head of the shallow groundwater with the heaviest contamination (based on observation and PID results) generally present within the capillary fringe immediately above groundwater. Elevated PID concentrations generally reduce with depth to the maximum depth of the investigation locations (4.00m bgl).

Analysis of representative soil samples identified concentrations of petroleum hydrocarbons and Naphthalene above the relevant published GACs for a residential end use. Soil saturation limits have also been exceeded for several hydrocarbon compounds indicating the potential presence of entrained NAPL within these materials. The presence of entrained NAPL within soils above the water table represents a potential on-going source for the impaction of groundwater within the underlying superficial deposits. This is assessed / discussed further in the following sections.

The presence of high-level hydrocarbon contamination (including entrained NAPL) within the near surface soils could also pose a potential risk to future site occupiers via permeation into drinking water supply pipes and via subsequent ingestion of the potable water supply. This is also discussed further in the following sections of this report.

<u>Groundwater</u>

Elevated concentrations of TPH (listed Aliphatic and Aromatic splits), EPH splits and PAHs have been identified at concentrations in excess of Tier 1 screening levels protective of groundwater receptors (Secondary A Aquifer). As the concentrations recorded are in excess of Tier 1 screening values protective of groundwater receptors, there is an identified risk to the shallow groundwater (Secondary A Aquifer) beneath the site.

Exceedances of residential SoBRA screening values have been identified at the site and consequently there are potential risks to the proposed future residential development on site from volatilization to indoor air.

Free product

During the groundwater monitoring visit, LNAPL (free product) was recorded in WS01, WS201, WS202, WS203 and WS302 with a maximum thickness of 251mm identified within WS202. Product was also identified within BH08 after approximately 4litres of groundwater had been purged from the monitoring well.

UPDATED CSM AND RISK ASSESSMENT

The investigation and subsequent CSM has confirmed that the viable pollutant linkages relate to:

- The continuing impaction of shallow groundwater from hydrocarbon saturated soils and pockets of free product.
- Possible impact of future site operatives via the volatilisation to indoor air pathway from residual hydrocarbon impacted soils beneath the site.
- * Possible contact between future Groundworkers (direct contact, ingestion, and inhalation).
- ✤ Possible impaction to potable water supply pipes and ingestion by future site residents.

RECOMMENDATIONS

Based upon the results of this assessment, the site poses a potential risk to human health receptors (future commercial or residential development) and further risk assessment (including a human health DQRA) is considered necessary to assess the extent of remedial action required to mitigate associated risks to acceptable levels.

Once the additional risk assessments are complete and the extent of remediation is defined, a Remediation Options Appraisal (ROA) should be completed with the aim of producing a suitable remediation strategy to mitigate identified risks to acceptable levels (Remedial Target Values and / or Soil Saturation Limits).

At present, OHES considers that the minimum remedial requirement for the site would be the removal / treatment of free product and hydrocarbon saturated soils from beneath the site areas with the additional soil / groundwater remediation likely to be required to meet any remedial targets set by the DQRA. Based upon OHES' current understanding of the site, it is estimated that the excavation of hydrocarbon saturated soils would cover an area of 40m x 20m and extend up to 3.0m bgl (based upon existing soil saturation data). Depending on findings during the works this excavation may be extended or reduced as areas of gross contamination will need to be 'chased out' during the works.

1.0 INTRODUCTION

1.1 Context and Purpose

OHES Environmental Ltd (OHES) was instructed by Watson Fuels Limited (Watson) (the 'client') to complete a groundwater monitoring event and updated risk assessment for the Southdown Oils oil depot site, Thatcham (hereafter referred to as 'the site').

It is understood that Watson are now seeking to sell the freehold of the site for likely future residential development and, as such, require a suitable survey of the site to determine current contamination levels and associated risks. Given the level of previous site investigation and the number of monitoring wells that remain on site, OHES considered that an updated groundwater monitoring event to incorporate groundwater sample analysis would be appropriate to achieve this objective without the need for further intrusive site investigation.

This assessment has been designed on order to meet the requirements for such assessment as detailed within '*Model Procedures for the Management of Land Contamination*' (CLR11) and '*Guidance for the Safe Development of Housing on Land Affected by Contamination*' (R&D Publication 66: 2008). The latter guidance is particularly focussed on the development of housing on land affected by contamination. However, the advice is generally applicable to other forms of development and to sites where no developments is proposed.

SITE INFORMATION	
Name and Address	Southdown Oil Supplies, Pound Lane, Thatcham, Berkshire, RG19 3TQ.
Location	The site is located off Pound Lane within a predominantly residential setting and is located in the town of Thatcham circa 3.0km East of Newbury.
Surrounding Land Use	The property is surrounded by residential land use with the closest buildings located adjacent to the south and west, 25m north and 50m east. A small grass field is located adjacent to the eastern boundary of the site and a sewage works is located 80m south.
Grid Reference	SU 5023 6728
Current Land Use	The site is a broadly square plot of land comprising an inactive fuel oil storage and distribution depot previously operated by Watson Fuels.
Site Size	0.12 Ha
Proposed Development / End Use	It is understood that the site is to be sold for likely future residential development

1.2 Site Details

1.3 Previous Assessments

A number of previous assessments and reports have been completed for the site, which includes the following:

- Environmental Review Southdown Oil Supplies Ltd" (Ref: MC2101A) by Aspinwall and Company, dated November 1997.
- ☆ 'Phase Two Site Investigation Southdown Oil Supplies, Thatcham' (Ref: MC2101A) by Aspinwall and Company, dated April 1998.

- ★ 'Environmental Review Southdown Oil Supplies Ltd' (Ref: SO038001A) by Enviros Aspinwall, dated August 2000.
- * 'Remediation Strategy' (Reported as a letter to Southdown Oils) by Enviros, dated 21st August 2005.
- * 'Site Inspection Report' by OHES, dated 20th June 2011.
- * 'Project Alex Land Quality Assessment' by SKM Enviros, dated October 2013.
- ★ 'Environmental Site Assessment' (Ref: R001BC 14.6977.06) by OHES, dated October 2014.
- * 'Remediation Options Appraisal' (Ref: R002BC 14.6977.06) by OHES dated December 2014.
- * 'Remediation Verification Report' (Ref: R003LD 15.6977.06) by OHES dated October 2015.

In addition to the reports relating to the site, OHES has been provided with a number of reports (both partial and full copies) relating to adjacent properties that were undertaken prior to redevelopment as residential properties. These reports include:

- 'Preliminary Contamination Investigation William Jacks Group, Lower Way, Thatcham', by Southern Testing, dated 1996 (Full Copy).
- ☆ 'Soil Sampling Report (Phase III Development) Lower Way, Thatcham' (William Jacks Site)', by Arcadis Geraghty and Miller, dated December 1999 (Full Copy).
- 'Remedial Action Plan Former Milk Distribution Depot, Pound Lane, Thatcham', by Arcadis Geraghty and Miller, dated December 1999 (Partial Copy).
- ☆ 'Phase I/II Environmental Assessment Lower Way, Thatcham' (Former William Jacks Site), by Arcadis Geraghty and Miller, dated April 2000 (Partial Copy).

A summary of the key findings of these reports is provided in previous reports, most notably OHES Environmental Site Assessment dated October 2014. A summary of the key findings is presented in the following section and the results contained within have been used to inform the risk assessment detailed herein.

Summary of Previous Works

Previous site investigation works (as detailed in the above referenced reports) identified widespread soil and groundwater contamination at the site, principally to the area south of the bunded tank farm inclusive of the area occupied by the store room/vehicle repair garage and extending to the southern site boundary. Evidence of impact was also noted around the current and former loading gantries located to the west of the bunded tank farm.

Previous correspondence with the Local Authority and Environment Agency prior to the acquisition of the Southdown Oil business by Watson Fuels confirmed their concern relating to contamination levels on site and, as such, small scale remedial action was undertaken to manage the risk. During the acquisition of the Watson Fuels business by World Fuels Services the issues surrounding land contamination were raised and this process provided the driver further assessment and remedial action to be undertaken under an agreed Remediation Implementation Plan and Monitoring Programme (RMIP).

Following detailed site investigation works, remedial action was deemed to be required and, following a comprehensive Remediation Options Appraisal (ROA), a Dual Phase Vacuum Extraction (DPVE) was considered the most appropriate method of remediation. A remedial target was agreed with the regulators which comprised the reduction of LNAPL in all areas of the plume.

DPVE was commenced at the site in January 2015 and operated for a period of approximately nine months until September 2015. Following a period of post remedial monitoring the site was considered suitable for ongoing use as an oil storage and distribution depot and the data was provided to the regulators for review in September 2015. The regulator confirmed their acceptance to this in correspondence and a site meeting and, as such, the DPVE system was decommissioned.

It was recommended that residual LNAPL should be monitored on an annual basis during continued operation of the site as a fuel oil storage and distribution depot and this has been ongoing since.

1.4 Objectives and Scope of Works

The previous remediation works had reduced contamination levels to a point at which the site was considered to be suitable for ongoing use as an oil storage and distribution depot subject to ongoing annual monitoring to confirm contamination levels. However, it is now understood that Watson Fuels intend to cease operations on site and sell the property freehold for proposed residential development to match what has been constructed on neighbouring properties over the last 10 to 15 years. As such, an updated assessment of environmental risks was required in the context of this proposal.

In the context of the above, the objectives of the assessment are:

- ☆ Complete a Generic Quantitative Risk Assessment (GQRA) to assess the significance of the chemical analysis results with respect to controlled waters risk. Results will also be screened against commercial and residential human health assessment criteria along with a comment on human health risks based on historical soil data.
- ☆ Review previous assessments and update previous detailed conceptual site model (CSM) defining all potential pollutant linkages that may be present on site in order to enable an updated assessment of environmental risks.
- Provide recommendations for further site investigation, risk assessment and / or remedial works required for the proposed end-use. Detailed scopes of work and associated costs will be provided separately.

In order to achieve the objectives of the assessment, the following works were undertaken at the site:

- * Detailed review of previous assessments undertaken at the site.
- ☆ 1 No. visit to the site to complete groundwater monitoring on all accessible existing monitoring wells.
- * Sampling of groundwater from all accessible monitoring wells using low flow sampling techniques.
- Submission of groundwater samples to an approved UKAS and MCERTS accredited laboratory for an appropriate suite of chemical analysis.

1.5 Guidance and Standards

In order to achieve the objectives set out in Section 1.2, OHES has designed and delivered a suitable level and method of investigation and assessment in accordance with industry best practice, the documents referenced in Section 1.0 and the following technical guidelines:

- * BS10175:2011 'Investigation of Potentially Contaminated Sites Code of Practice'.
- ***** BS 5930:2015, 'Code of practice for ground investigations'.

* Technical Report P5-065/TR, 'Technical Aspects of Site Investigation'.

The scope and methodology completed as part of this assessment has been designed to meet the requirements of the above documents.

1.6 Project Information and Limitations

This report has been produced solely for Watson Fuels Ltd based upon the instruction received from Matthew Brown on 28th August 2018. This assessment has been completed in the context of the agreed scope of works as detailed in OHES proposal dated 21st August 2018.

This assessment has been completed in the context of the agreed scope of work and should not be used in a different context or for a different purpose. Furthermore, should any new information, changes in best practices and / or changes in legislation arise in the future then this may require reassessment of the findings of the assessment.

The information and conclusions contained within the ESA have been made based upon information provided by Watson, Exova Jones Environmental (laboratory analysis results) and Landmark Envirocheck Ltd (Environmental Desk Study Information).

OHES cannot be held responsible for inaccuracies in the data supplied or published by any other party. In addition, no responsibility can be accepted by OHES for any variations in environmental liabilities which arise from information or reports not provided at the time of the assessment and where the presence of such information could not be foreseen.

The updated risk assessment, its conclusions and recommendations are based upon the proposed future residential end use of the site. In addition, the assessment has been based upon the nature of the surrounding area at the time of completing the assessment and with consideration of any reasonably foreseeable potential future changes. Should the site or surrounding area be redeveloped in the future then this may change environmental risks identified and require review of this assessment.

2.0 PREVIOUS CONCEPTUAL SITE MODEL AND RISK ASSESSMENT

2.1 Summary of Contaminant Sources

A summary of the known contamination at the site is summarised in the following sections.

Gross Soil Contamination

Visual and olfactory evidence of hydrocarbon contamination was identified in all investigation locations (WS201 to WS210) during the previous OHES site investigations and as part of the additional site investigation (BH301 to BH310) most notably to the south of the bunded tank farm (inclusive of the area beneath the internal storage/former vehicle repair part of the site and in the area of the former loading gantry. Generally, the highest PID concentrations were identified at shallow depths (0.50 - 2.50m bgl) in the area of the former loading gantry, reducing with depth to the maximum depth of the investigation locations (4.00m bgl).

Analysis of representative soil samples identified no concentrations of Petroleum Hydrocarbons above the relevant published GACs for a commercial / industrial end use. However, the soil saturation limits were exceeded for certain hydrocarbons compounds in the Made Ground and shallow superficial deposits beneath the site indicating the potential presence of entrained NAPL within these materials. The presence of entrained NAPL within soils above the water table represents a potential on-going source for the impaction of groundwater within the underlying superficial deposits and a potential risk to the Moor Ditch.

The presence of high-level hydrocarbon contamination (including entrained NAPL) within the near surface soils could also pose a potential risk to future users via permeation into drinking water supply pipes and via subsequent ingestion of the potable water supply.

<u>Groundwater</u>

The main controlled waters receptor has previously been identified as shallow groundwater beneath the site, although groundwater in the area is not considered to be highly sensitive due to the following:

- ★ There are no known potable abstractions or abstractions for other purposes within the vicinity of the site.
- ★ There is minimal potential for future use for public or private abstractions given the use of the area (no individual residential properties with gardens, presence of a large sewage works, etc).
- ★ Groundwater in the surrounding area has been proven to be impacted by contamination from a wider variety of sources.
- ★ There are a number of other sources which are likely to have affected local groundwater quality including the sewage works to the south and landfill sites to the west and south-east.

Elevated concentrations of dissolved phase contamination were identified across the site (principally in the south-east) during previous groundwater monitoring events, however dissolved phase hydrocarbon concentrations were significantly reduced across the area of the treatment zone upon completion of the DPVE remediation.

Free Product

The main driver for remediation works (DPVE) at the site was the identification of a widespread LNAPL plume in south eastern areas of the site. Upon completion of the remediation works, a round of validation monitoring was completed and identified the following:

- ★ Residual LNAPL was present at thicknesses in excess of the remedial target of 5mm in WS201 (10mm), WS202 (94mm) and BH302 (29mm).
- ★ The exceedances identified in WS202 and BH302 were significantly elevated however it was noted that surrounding wells were absent of LNAPL and recharge testing highlighted a very slow recharge of LNAPL into these wells. On this basis residual LNAPL in WS202 and BH302 was considered to be of very low volume and very limited mobility.
- ★ The validation data was submitted to the regulator for review in September 2015 and subsequent to approval the DPVE system was decommissioned.

Based on post DPVE groundwater conditions the CSM was refined and risks to the underlying Secondary A Aquifer with respect to LNAPL were considered to be significantly reduced. Potential risks were considered to remain with respect to hydrocarbon contamination within soils and dissolved phase hydrocarbon contamination in groundwater. However, the remaining risks were considered to be acceptable in the context of ongoing use of the site as a fuel oil storage and distribution depot.

The table overleaf presents the updated conceptual site model following completion of the DPVE remediation. The table includes details of the potential pollutant linkages considered to be present at the site and an associated risk assessment completed in accordance with the methodology as detailed in Appendix 1.

IDENTIFIED POLLUTANT LINKAGES			PRELIMINARY RISK ASSESSMENT			
SOURCE	PATHWAY	RECEPTOR	PROBABILITY	SEVERITY	RISK ASSESSMENT AND JUSTIFICATION	
	Leaching of contaminants into shallow groundwater	Shallow groundwater in sand and gravel deposits beneath the site (designated as a Secondary A Aquifer)	Likely	Medium	Moderate / Low Risk -Based on significant reduction in LNAPL across south eastern areas of the site and the limited extent and mobility of residual LNAPL, the risk rating has been downgraded from High.	
1) Gross soil contamination present in soils.	Lateral migration through groundwater	Shallow groundwater in sand and gravel deposits beyond the	Low Likelihood	Medium	Moderate / Low Risk -Based on significant reduction in LNAPL across south eastern areas of the site and the limited extent and mobility of residual LNAPL, the risk rating has been downgraded from moderate.	
2) Elevated concentrations of	Lateral migration along sub- surface utilities	(designated as a Secondary A Aquifer)	Low Likelihood	Medium	Low/moderate risk – Contamination is typically present at depths greater than 1.0 to 1.5 in the area where off-site trending services are present.	
dissolved phase hydrocarbons in groundwater	Lateral migration through groundwater	Moor Ditch	Unlikely	Medium	Low Risk	
principally in the south-east	Lateral migration through groundwater	Thatcham Reed Bed SSSI	Unlikely	Medium	Low Risk	
3) Residual LNAPL	Direct contact / soil ingestion	Sitousors	Unlikely	Medium	Low Risk	
remaining in WS202 and WS202	Inhalation of volatile vapours / dust	Site users	Unlikely	Medium	Low Risk	
W3502.	Direct contact / soil ingestion	Groundworkers / sub-	Likely	Mild	Moderate/Low Risk	
	Inhalation of volatile vapours / dust	workers	Likely	Mild	Moderate/Low Risk	
	Direct contact / soil ingestion		Unlikely	Medium	Low Risk	

	Inhalation of volatile vapours / dust	Occupiers of adjacent residential properties (3 storey flats)	Unlikely	Medium	<i>Low Risk</i> - Based on significant reduction in LNAPL across south eastern areas of the site and the limited extent and mobility of residual LNAPL, the risk rating has been downgraded from moderate / Low.
Contamination sourced from off- site sources	Migration through shallow soils and groundwater	Shallow Groundwater underlying the site	Low Likelihood	Mild	Low Risk

3.0 GROUNDWATER INFORMATION

3.1 Monitoring and Sampling Methodology

One round of groundwater monitoring and sampling was completed at the site on 5th September 2018 using an oil / water interface probe. The groundwater monitoring included the following:

- * Measurement of volatile vapour levels using a photo-ionisation detector (PID).
- Measurement of depth and thickness of any Light Non-Aqueous Phase Liquids (LNAPL) and/or Dense Non-Aqueous Phase Liquids (DNAPL) as well as depths to groundwater and base of monitoring wells.

Groundwater monitoring was completed on all accessible wells (31 No. wells in total) and upon completion of monitoring, representative groundwater or product samples were collected from each well (where sufficient water / product was present). Prior to sampling of groundwater, each well was purged of three well volumes (where possible) using a peristaltic pump. Once three well volumes had been removed from the well a representative sample was collected and placed directly into appropriate glass bottles for the analysis required.

Additional bottles were also filled to allow headspace readings for volatile organic compounds (VOC) using a PID and assessment of visual or olfactory evidence of impact. Once collected, the samples from the site were transferred in chilled cool boxes to Exova Jones Environmental Laboratory Ltd with an appropriate chain of custody for analysis.

The water samples collected from the site were scheduled for chemical testing to allow an assessment of the severity and vertical/lateral extent of contamination present.

The scope of testing scheduled was based on the likely Contaminants of Concern (CoC) likely to be present as identified in the previous phases of investigation and remediation at the site. The extent of testing undertaken was as follows:

CONTAMINANTS	NUMBER OF SAMPLES ANALYSED
Speciated Petroleum Hydrocarbons (TPH-CWG)	13
Banded and Total Petroleum Hydrocarbons	8
Polycyclic Aromatic Hydrocarbons (PAH)	6
Volatile Organic Compounds (VOC)	10
Semi Volatile Organic Compounds (SVOC)	10
Whole Oil Analysis	6

3.2 Groundwater Monitoring Data

The results of groundwater monitoring are presented in Appendix 2. In summary, groundwater was encountered at depths ranging between 1.722m and 2.500m bgl which is broadly comparable with that identified previously.

The monitoring data from the groundwater monitoring / sampling completed on 5th September 2018 is summarised in the following table.

LOCATION	BOREHOLE LEVEL (M AOD)	DEPTH TO PRODUCT (M BGL)	DEPTH TO GROUNDWATER (M BGL)	REDUCED GROUNDWATER LEVEL (M AOD)
BH01	98.520	NP	2.202	96.318
BH02	98.420	NP	2.198	96.222
BH04	98.160	NP	2.265	95.895
BH05	97.980	NP	2.243	95.737
BH06	98.439	NP	2.333	96.106
BH07	98.551	NP	2.313	96.238
BH08	98.424	NP	2.320	96.104
BH09	98.446	NP	2.190	96.256
BH10	98.471	NP	2.222	96.249
BHA	NL	NP	2.255	N/A
BHB	NL	NP	2.367	N/A
BHC	NL	NP	2.310	N/A
WS01	98.474	2.260	2.500	95.974
WS02	98.469	NP	2.432	96.037
WS201	98.472	2.253	2.308	96.164
WS202	98.424	1.925	2.176	96.248
WS203	98.387	1.705	1.722	96.665
WS204	98.474	NP	2.270	96.204
WS205	98.469	NP	2.362	96.107
WS206	98.480	NP	2.295	96.185
WS207	98.506	NP	2.380	96.126
WS207A	NL	NP	2.375	N/A
WS208	98.393	NP	2.268	96.125
WS209	98.405	NP	2.208	96.197
WS211	NL	NP	2.220	N/A
WS212	NL	NP	2.312	N/A
WS301	NL	NP	2.413	N/A
WS302	NL	2.353	2.356	N/A

The observations from the monitoring suggest that the shallow groundwater body encountered in the monitoring wells at the site represents a single continuous body of water within the underlying superficial deposits.

Relative ground water resting levels were calculated based on the levelling undertaken of the monitoring wells and the groundwater level data recorded during monitoring. A groundwater flow direction towards the south could be inferred from the data.

4.0 CONTAMINATION ASSESSMENT

4.1 Evidence of Contamination Encountered

<u>4.1.1 Soils</u>

Visual and olfactory evidence of hydrocarbon contamination was identified in all investigation locations (WS201 to WS210 and BH301 to BH310) during the previous phases of OHES investigation. Generally, the highest PID concentrations were identified at shallow depths (0.50 - 2.50m bgl) in the area of the former loading gantry, reducing with depth to the maximum depth of the investigation locations (4.00m bgl).

4.1.2 Groundwater

Details of contamination observations and volatile vapour readings are presented in the groundwater monitoring sheets presented in Appendix 2.

During the groundwater monitoring visit, Light Non-Aqueous Phase Liquid (LNAPL) was identified within 5No. monitoring wells (WS01, WS201, WS202, WS203 and WS302), all located to the south of the tank farm towards the south-east of the site, with a maximum thickness of 251mm identified within WS202. Product was also identified within BH08 after approximately 4 litres of groundwater had been purged from the monitoring well. Samples of LNAPL were obtained from all monitoring wells containing product and were submitted for Whole Oil identification.

Visual evidence of hydrocarbon impact was identified in the form of a sheen on purged groundwater within BH06, BH10 and WS212. Olfactory evidence of hydrocarbon impact was identified in the form of elevated PID readings and odours in all monitoring well locations.

4.2 Chemical Analysis – Soils

As part of this assessment, the laboratory results from the previous phases of OHES investigation at the site are presented in the laboratory analysis certificates in Appendix 3 and are summarised on the Tier 1 screening sheets in Appendix 4 (determinants recording concentrations above LLD) where they are compared against relevant Tier 1 screening criteria.

Where possible the soil results have been compared to the respective Human Health guidance criteria for residential end use including LQM/CIEH S4ULs, Tier 1 Generic Assessment Criteria (VOC/SVOC) produced by CL:AIRE/AGS and Soil Guideline Values (SGV). These are considered the most suitable given the proposed future residential use of the site.

Guideline values for 1% SOM, where available, have been used in this assessment to assess risks to Human Health as they are considered the most suitably conservative based upon the range of SOM values between 0.3 and 0.6% obtained from representative soil samples collected from the site.

4.2.1 Hydrocarbon Contamination

Based on field screening results and to provide an indication of lateral and vertical assessment of soils at the site, a total of 68 no. soil samples were submitted for either banded TPH or speciated TPH analysis depending on the PID readings recorded.

28 no. samples recorded concentrations of total, banded or speciated hydrocarbons above the Tier 1 screening levels for human health receptors associated with residential end use. Tier 1 screening sheets are presented in Appendix 4 and are summarised in the table below:

DETERMINANT	TIER 1 RESIDENTIAL VALUE (MG/KG)	NUMBER OF EXCEEDANCES	RANGE OF RECORDED EXCEEDANCES (MG/KG)	LOCATION OF HIGHEST CONCENTRATION
TPH Aliphatic C8-C10	27	14	36.2 – 107.8	WS203 at 1.40 – 1.50m
TPH Aliphatic C10-C12	130	19	142.7 – 1,054.7	WS203 at 3.70 – 3.80m
TPH Aliphatic C12-C16	1,100	10	1,171 – 2,589	WS208 at 1.90 – 2.00m
TPH Aromatic C10-C12	74	14	81.5 – 346.3	WS203 at 3.70 – 3.80m
TPH Aromatic C12-C16	140	17	147 – 1,225	WS203 at 3.70 – 3.80m
TPH Aromatic C16-C21	260	16	295 – 1,616	WS308 at 0.50m
EPH C8-C10	27	8	101 – 2,095	WS210 at 1.20 – 1.30m
EPH C10-C12	74	8	174 – 2,616	WS210 at 1.20 – 1.30m
EPH C12-C16	140	8	431 – 6,500	WS210 at 1.20 – 1.30m
EPH C16-C21	260	8	384 – 5,775	WS210 at 1.20 – 1.30m
EPH C21-C35	1,100	2	3762 – 4,045	WS204 at 2.70 – 2.80m

Exceedances of soil saturation levels for certain TPH fractions were present in the following samples:

- ★ WS201 at1.50 to 1.60m located within the garage building in the south-east of the site.
- ★ WS204 at 1.90 to 2.00m located within the garage building in the south-east of the site.
- ★ WS206 at 2.40 to 2.50m located within the garage building in the south-east of the site.
- * WS207 at 2.40 to 2.50m located within the garage building in the south of the site.
- ★ WS302 at 2.50m located within the garage building in the south of the site.
- ★ WS303 at 2.00m located within the garage building in the south of the site.
- ★ WS304 at 0.50m located to the west of the tank farm in the vicinity of the former loading gantry.
- ★ WS306 at 1.90m located to the west of the tank farm in the vicinity of the former loading gantry.
- ★ WS309 at 1.00m located to the west of the tank farm in the vicinity of the former loading gantry.
- ★ WS310 at 2.50m located to the west of the tank farm in the vicinity of the former loading gantry.

The presence of TPH concentrations that exceed soil saturation levels indicates that free product is likely to be present within the soils beneath the site in the vicinity of these locations. Soils saturated with hydrocarbons are also likely to represent a source for the impaction of underlying groundwater and a risk to controlled water receptors. This is discussed further in Sections 5.0 and 6.0.

Laboratory interpretation of the identified hydrocarbons suggests that they are likely to be of degraded diesel, degraded kerosene and possible lubricating oil which is consistent with the known current and historical use of the site.

4.2.2 Volatile and Semi-Volatile Organic Compounds

BTEX and MTBE Analysis

20 No. samples were analysed for BTEX compounds and MTBE. Concentrations of Ethylbenzene and m/p-Xylene were elevated above the LLD however all concentrations are below residential Tier 1 screening levels for human health.

SVOC/VOC Analysis

7 No. samples were scheduled for SVOC and 10 No. samples were scheduled for VOC analysis. Concentrations of multiple SVOCs and VOCs were elevated above the LLD however all concentrations are below Tier 1 screening levels for human health receptors associated with residential end use with the exception of 2 No. exceedances of Naphthalene in samples obtained from WS202 at 1.30m and WS203 between 0.50 and 0.60m (both located to the south of the tank farm) as summarised in the table below:

DETERMINANT	TIER 1 RESIDENTIAL VALUE (MG/KG)	NUMBER OF EXCEEDANCES	RANGE OF RECORDED EXCEEDANCES (MG/KG)	LOCATION OF HIGHEST CONCENTRATION
Naphthalene	2.3	2	10.373 – 17.967	WS203 at 0.50 – 0.60m

4.3 Chemical Analysis – Groundwater

The laboratory results for the monitoring event completed on 5th September 2018 are presented in the laboratory analysis certificates in Appendix 3 and are summarised on the Tier 1 screening sheets in Appendix 4 (determinants recording concentrations above LLD) where they are compared against relevant Tier 1 screening criteria.

For the purpose of assessing risks to controlled waters, consideration needs to be given to the risks to shallow groundwater within the Secondary A Aquifer (Superficial Deposits) beneath the site. Risks to the nearest offsite receptor (Moor Ditch approximately 310m south) have previously been identified as low given the distance to the Moor Ditch, the intervening land uses (including sewage works) and the identified reduction in contamination with distance from the site boundary from assessments on the property to the south. Consequently, the lab results have been compared against the following Tier 1 Criteria:

- ★ UK Drinking Water Standards (DWS) for the protection of groundwater or the Water Supply Regulations (1989).
- * WHO Drinking Water Standards
- ★ EPA Towards Setting Groundwater Guideline Values for Ireland.

In addition to the above, the results have been assessed against SoBRA screening values for residential end use (taken from SoBRA Development of Generic Assessment Criteria for Assessing Vapour Risks to Human Health from Volatile Contaminants in Groundwater, Version 1.0, dated February2017) to determine potential human health risks from dissolved phase impact.

21 No. representative samples of groundwater were obtained during monitoring and submitted for a suite of analyses comprising banded EPH, TPH CWG, SVOC/VOC, PAH and BTEX and MTBE.

Risks to Groundwater within the Secondary A Aquifer (Drift Deposits)

The concentrations exceeding Tier 1 levels protective of groundwater receptors are summarised in the following table:

DETERMINANT	TIER 1 SCREENING VALUE (μG/L)	NUMBER OF EXCEEDANCES	RANGE OF RECORDED EXCEEDANCES (µG/L)	LOCATION OF HIGHEST CONCENTRATION
TPH Aliphatic C8-C10	10	5	21 – 246	WS207
TPH Aliphatic C10-C12	10	6	130 – 3,412	WS205
TPH Aliphatic C12-C16	10	7	70 – 9,850	WS207A
TPH Aliphatic C16-C21	10	6	180 – 10,810	WS207A
TPH Aliphatic C21-C35	10	7	30 – 5,700	WS207A
TPH Aromatic C10-C12	10	9	80 – 487	WS207A
TPH Aromatic C12-C16	10	10	60 – 3,790	WS207A
TPH Aromatic C16-C21	10	5	800 – 8,090	WS207A
TPH Aromatic C21-C35	10	5	240 – 4,180	WS207A
EPH C8-C10	10	6	20 - 140	BHA
EPH C10-C12	10	7	70 – 630	WS211
EPH C12-C16	10	7	230 – 1,850	WS211
EPH C16-C21	10	7	150 – 2,090	WS211
EPH C21-C35	10	5	110 – 1,610	WS211
Acenaphthylene	0.2	1	0.303	BH10
Acenaphthene	0.2	5	0.459 – 2	BH02
Fluorene	0.2	10	0.327 - 5	BH02
Phenanthrene	0.2	5	0.554 – 4.2	BH02
Fluoranthene	0.1	1	0.243	WS207A
Pyrene	0.2	1	1.666	WS207A
Chrysene	0.2	1	0.382	WS207A

Elevated concentrations of EPH bands, TPH (listed Aliphatic and Aromatic splits) and listed PAHs have been identified across the site in excess of the Tier 1 Screening values for groundwater receptors (Secondary A Aquifer).

The values detected in groundwater have been assessed against SoBRA screening values to determine potential risks to the proposed future residential development on site (considered to be the receptor most at risk given the proximity of identified contamination). Concentrations of Aliphatic C8 to C10 and Aliphatic C10-C12 have been found to exceed these screening values within WS212 (located of the northwest corner of the office building in the south), WS207, WS207A (located in the garage building in the south of the site), WS205, WS02 and WS208 (all located in the south-east of the site). These exceedances are summarised in the table below.

DETERMINANT	SOBRA RESIDENTIAL VALUE (µG/L)	NUMBER OF EXCEEDANCES	RANGE OF RECORDED EXCEEDANCES (µG/L)	LOCATION OF HIGHEST CONCENTRATION
TPH Aliphatic C8- C10	57	1	246	WS207
TPH Aliphatic C10-C12	37	6	130 – 3,412	WS205

The potential risks to groundwater receptors are discussed further in sections 5.0 and 6.0.

LNAPL Analysis

Whole oil analysis was undertaken on samples of LNAPL collected during the first monitoring visit.

The results of this analysis are summarised in the following table:

LOCATION	DESCRIPTION	IDENTIFICATION	APPROXIMATE AGE
BH08	Brown Oil	Degraded Diesel	20 years
WS201	Dark Brown Oil	Degraded Diesel	20 years
WS202	Brown Oil	Degraded Diesel	20 years
WS203	Brown Oil	Degraded Diesel	20 years
WS302	Dark Brown Oil	Degraded Diesel	20 years
WS01	Brown Oil	Degraded Diesel	20 years

The results of the testing a consistent with that identified during previous assessments and remediation works.

5.0 ENVIRONMENTAL RISK ASSESSMENT

5.1 Identified Contamination

<u>Soils</u>

Extensive evidence (visual and olfactory) of hydrocarbon contamination was identified in soil during both previous phases of site investigation completed by OHES. Strong odours and staining were noted to persist down to the head of the shallow groundwater with the heaviest contamination (based on observation and PID results) generally present within the capillary fringe immediately above groundwater. Elevated PID concentrations generally reduce with depth to the maximum depth of the investigation locations (4.00m bgl).

Analysis of representative soil samples identified concentrations of petroleum hydrocarbons and Naphthalene, to the south of the tank farm and to the west of the tank farm in the vicinity of the former loading gantry, above the relevant published GACs for a residential end use. Soil saturation limits have also been exceeded for several hydrocarbon compounds in the same areas of the site, indicating the potential presence of entrained NAPL within these materials. The presence of entrained NAPL within soils above the water table represents a potential on-going source for the impaction of groundwater within the underlying superficial deposits. This is assessed / discussed further in the following sections.

The presence of high-level hydrocarbon contamination (including entrained NAPL) within the near surface soils could also pose a potential risk to future site occupiers via permeation into drinking water supply pipes and via subsequent ingestion of the potable water supply. This is also discussed further in the following sections of this report.

<u>Groundwater</u>

Secondary A Aquifer

Elevated concentrations of TPH (listed Aliphatic and Aromatic splits), EPH splits and PAHs have been identified across the site at concentrations in excess of Tier 1 screening levels protective of groundwater receptors (Secondary A Aquifer). A comparison of the levels of dissolved phase contamination from the post remediation monitoring event carried out in 2015 and the groundwater monitoring event completed in 2018 shows that the levels of dissolved contamination have slightly reduced over time. However, as the concentrations recorded remain in excess of Tier 1 screening values protective of groundwater receptors, there is an identified risk to the shallow groundwater (Secondary A Aquifer) beneath the site.

Exceedances of residential SoBRA screening values have been identified in the south, south-west and south-east of the site and consequently there are potential risks to the proposed future residential development on site from volatilization to indoor air.

The associated risks are discussed further in Section 6.0.

<u>LNAPL</u>

During the groundwater monitoring visit, LNAPL (free product) was recorded in WS01, WS201, WS202, WS203 and WS302 (all located in the south and south-east of the site, to the south of the tank farm) with a maximum thickness of 251mm identified within WS202. Product was also identified within BH08 after approximately 4litres of groundwater had been purged from the monitoring well. Samples of LNAPL were obtained from all monitoring wells containing product and were submitted for Whole

Oil identification. Interpretation of the 6No. LNAPL samples obtained from the site returned interpretations of degraded diesel.

A comparison of the thicknesses of LNAPL from 2015 and 2018 was also completed and is summarised in the table below.

	LNAPL THICKNESS (M)							
WELL	4 [™] SEPTEMBER 2015	19 [™] JANUARY 2016	15 [™] MARCH 2017	31 st JANUARY 2018	5 [™] SEPTEMBER 2018			
WS01	0.004	0.442	Not Located	ND	0.240			
WS201	0.010	0.189	0.016	0.021	0.055			
WS202	0.094	0.410	ND	ND	0.251			
WS203	ND	Not Located	ND	0.011	0.017			
WS205	ND	0.015	ND	0.009	ND			
WS207	ND	ND	0.002	Not Located	ND			
W\$301	ND	ND	ND	0.001	ND			
W\$302	0.175	0.265	Not Located	Not Located	0.003			
Note: All thicknesses in metres. ND – None Detected								

The data appears to show that the presence of product within the monitoring wells is variable between monitoring visits (with the exception of WS201), although the maximum thickness of product has not varied significantly since remediation took place at site.

The presence of LNAPL (as an immiscible layer on groundwater) is likely to represent an ongoing source and risk to groundwater receptors. Entrained free product in soil will continue to act as a source for the dissolved phase impaction (constituent compounds) of shallow groundwater. Groundwater receptors are at risk from resulting dissolved phase contamination via lateral migration of groundwater through the near surface soils.

5.2 Identified Receptors

Potential receptors likely to be at risk from site sourced contamination are as follows:

- \star Groundwater in the underlying Secondary A Aquifer.
- ✤ Future occupiers of residential properties.
- Potable water supply pipes.
- ***** Groundworkers / sub-surface maintenance works.
- * Off-site residential premises (with associated human health receptors).
- ***** The Moor Ditch 310m south of the site.

5.3 Identified Pathways

Potential pathways along which contamination may impact the identified receptors are as follows:

- ☆ Leaching of contaminants from soil.
- * Lateral migration along sub-surface utilities.

- * Breakdown of plastic pipework and ingestion of contaminated water supply (future site occupiers).
- ★ Vertical migration and lateral migration via shallow groundwater within the Superficial Deposits.
- ★ Inhalation, ingestion and direct contact by humans (future on-site and current off-site receptors).

5.4 Updated Conceptual Site Model

The table overleaf presents an updated conceptual site model following completion of the additional groundwater monitoring event. The table includes details of the potential pollutant linkages considered to present and an associated risk assessment completed in accordance with the same methodology as the preliminary risk assessment as detailed in Section 2.0 and as detailed in Appendix 1.

IDENTIFIED POLLUTANT LINKAGES			UPDATED RISK ASSESSMENT		
SOURCE	ΡΑΤΗΨΑΥ	RECEPTOR	PROBABILITY	SEVERITY	RISK ASSESSMENT AND JUSTIFICATION
	Volatilisation to indoor air		Likely	Severe	High risk –In-situ PID screening identified elevated VOC levels within shallow soils indicating that strong hydrocarbon vapours are present in the near surface soils. Exceedances of residential screening values also represent potential risks to the proposed future residential development on site from volatilisation to indoor air.
	Soil Ingestion	Human Health –			Moderate risk – Exposure through direct contact is likely in a
Contaminated soils beneath the site	Dermal Contact / Dust	Residential end use	Likely	Medium	landscaped areas. However, based on the assumption that the proposed development will match the surrounding area, garden areas are unlikely and the extent of landscaping is limited.
	Potable Water Supply		Likely	Severe	High risk – At this stage the routes of future water supply pipes are unknown, however, it is likely that there will be a high risk unless upgraded water supply pipes be installed at the site.
	Migration along service routes	Shallow Groundwater (Secondary A Aquifer)	Low Likelihood	Medium	Low to Moderate Risk – The proposed development is likely to include new and revised routes for services with older routes capped or removed. The design of service should be done in such a way as to limit the potential for creation of preferential migration routes.
	Leaching of contaminants from soil and migration into groundwater		Likely	Medium	Moderate Risk – Previous remediation works was aimed at removing LNAPL from groundwater. The DPVE system is likely to have achieved some betterment in soil conditions but it has to be assumed that high contamination levels remain on site and also within previously inaccessible areas. Impact over the long term cannot be ruled out, especially if conditions change post development (ie increased infiltration).
	Leaching of contaminants from soil and lateral migration through groundwater	Moor Ditch Surface Water Receptor	Unlikely	Medium	Low Risk - G iven the distance to the Moor Ditch, the intervening land uses (including sewage works) and the identified reduction in contamination with distance from the site boundary from assessments on the property to the south.

	Volatilisation, ingestion, dermal contact and dust inhalation	Construction Workers	Likely	Medium	Low to Moderate risk – appropriate RAMS in accordance with CDM regulations and correct PPE should mitigate any risk to construction workers at the site.
	Volatilisation to indoor air	Human Health – Residential end use	Likely	Severe	High risk –PID screening of monitoring wells identified elevated VOC levels indicating that strong hydrocarbon vapours are present. Exceedances of SoBRA residential screening values also represent potential risks to the proposed future residential development on site from volatilisation to indoor air.
	Migration via drainage routes	Shallow	Unlikely	Medium	Low Risk – The proposed development is likely to include new and revised routes for services with older routes capped or removed. The design of service should be done in such a way as to limit the potential for creation of preferential migration routes
Dissolved phase contamination in groundwater	Lateral migration in shallow groundwater	Groundwater (Secondary A Aquifer)	Likely	Medium	Moderate Risk – After the completion of remediation in 2015, there was a significant reduction in dissolved phase contamination across the site. Investigations on the site to the south identified that the extent and mobility of dissolved phase contamination was limited. However, impact over the long term cannot be ruled out, especially if conditions change post development (i.e. increased infiltration).
	Lateral migration through groundwater	Moor Ditch Surface Water Receptor	Unlikely	Medium	Low Risk - G iven the distance to the Moor Ditch, the intervening land uses (including sewage works) and the identified reduction in contamination with distance from the site boundary from assessments on the property to the south.
	Lateral migration in groundwater followed by volatilization to indoor air	Human Health – Off- site receptors	Unlikely	Medium	Low Risk – Significant reductions in LNAPL across south eastern areas of the site has occurred following previous remediation works. Investigations on the site to the south identified that the extent and mobility of LNAPL and dissolved phase contamination was limited. On this basis no further assessment of this pollutant linkage is required.
INARI and saturated	Volatilisation to indoor air	Human Health – Residential end use	Likely	Severe	High risk –The presence of LNAPL is likely to continue to contribute to elevated levels of dissolved phase contamination that may contribute to exceedances of SoBRA residential screening values.
soils	Migration via drainage routes	Shallow Groundwater (Secondary A Aquifer)	Low Likelihood	Medium	Low to Moderate Risk – The proposed development is likely to include new and revised routes for services with older routes capped or removed. The design of service should be done in such a way as to limit the potential for creation of preferential migration routes.

	Lateral migration in shallow groundwater		Likely	Medium	Moderate Risk – After the completion of remediation in 2015, there was a significant reduction in LNAPL across south eastern areas of the site. Investigations on the site to the south identified that the extent and mobility of LNAPL and dissolved phase contamination was limited. Given that levels of contamination in groundwater have not changed significantly, risk is considered to be moderate.
	Lateral migration through groundwater	Moor Ditch Surface Water Receptor	Unlikely	Medium	Low Risk - Given the distance to the Moor Ditch, the intervening land uses (including sewage works) and the identified reduction in contamination with distance from the site boundary from assessments on the property to the south.
	Lateral migration in groundwater followed by volatilization to indoor air	Human Health – Off- site receptors	Unlikely	Medium	Low Risk – Given the significant reduction in LNAPL across south eastern areas of the site. Investigations on the site to the south identified that the extent and mobility of LNAPL and dissolved phase contamination was limited. On this basis no further assessment of this pollutant linkage is required.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Contamination Summary

An assessment of the findings of this investigation has confirmed the presence of the following:

- ★ Hydrocarbon saturated soils beneath the site with levels indicative of the presence of free product entrained within the soil matrix.
- * Extensive dissolved phase contamination within shallow groundwater across the site.
- ★ LNAPL within WS01, WS201, WS202, WS203 and WS302 (located in the southeast of the site and south of the tank farm).
- * Elevated hydrocarbon vapours (as per the PID results) are present in soils across the site.

The previous phases of OHES site investigation identified hydrocarbon contamination within the shallow soils above the water table with the most significant contamination generally located across the capillary fringe. Contamination levels generally reduce with depth towards the base of the exploratory boreholes (as shown by the in-situ PID results). The saturated soils / capillary fringe is likely to represent an on-going source of groundwater contamination that is likely to result in dissolved phase impact to groundwater and product layers (where present).

Analysis of representative soil samples identified concentrations of petroleum hydrocarbons and Naphthalene above the relevant published GACs for a residential end use. Soil saturation limits have also been exceeded for several hydrocarbon compounds indicating the potential presence of entrained NAPL within these materials. The presence of entrained NAPL within soils above the water table represents a potential on-going source for the impaction of groundwater within the underlying superficial deposits.

In-situ PID screening identified elevated VOC levels within shallow soils indicating that strong hydrocarbon vapours are present. Exceedances of SoBRA residential screening values within groundwater samples obtained at the site also represent potential risks to the proposed future residential development on site from volatilisation to indoor air. Further assessment of potential vapour inhalation risks will be required. However, risks associated with vapour ingress should be mitigated by the inclusion of suitable protection measures such as hydrocarbon resistant membranes and sub-floor venting etc within any buildings constructed on site.

During the groundwater monitoring visit, LNAPL was recorded in WS01, WS201, WS202, WS203 and WS302 (all located in the south and south-east of the site, to the south of the tank farm) with a maximum thickness of 251mm identified within WS202. LNAPL was also identified within BH08 after approximately 4litres of groundwater had been purged from the monitoring well. Samples of LNAPL were obtained from all monitoring wells containing product and were submitted for Whole Oil identification. Interpretation of the 6No. LNAPL samples obtained from the site returned interpretations of degraded diesel. The presence of free product (as an immiscible layer on groundwater) is likely to represent an ongoing source and risk to groundwater receptors. Entrained free product in soil will continue to act as a source for the dissolved phase impaction (constituent compounds) of shallow groundwater.

Following completion of the CSM, an assessment of risk has been undertaken based on the likelihood of impact and the severity should impact occur. The results of this assessment are also included in the CSM for reference. Justification for the assessment of risk is presented below. *Human Health Risks – Residential End-Use*

With respect to a residential end use, analysis of representative soil samples has identified concentrations of petroleum hydrocarbons and Naphthalene above the relevant published Tier 1 Screening Values protective of human health receptors associated with a potential residential end use. Therefore, future residential occupiers may be at risk from the identified contamination via the following pathways:

- * Volatilisation to indoor air.
- * Soil ingestion, dermal contact and dust inhalation
- * Impaction of water supply pipes and ingestion of contaminated water

The assessment of risks associated with the above pollutant linkages has determined that the potential risk to future residential occupiers of the site via volatilisation to indoor air and impaction to water supply pipes is high and direct contact (soil ingestion etc.) is moderate.

It is anticipated that in the event of future residential development that risks via the direct contact pathways (soil ingestion etc.) can be mitigated via the inclusion of hard landscaping (roads, parking areas and the buildings themselves etc.) and capping layers to soft landscaped/garden areas within the development plan. The inclusion of these will effectively break the identified pollutant linkages for direct contact pathways and are likely to reduce associated risks to acceptable levels. These measures will need to be included within a remediation strategy document with suitable validation provided upon completion.

Hydrocarbon contamination has the potential to breakdown standard plastic water supply pipes causing contamination of potable supplies and subsequent impact via ingestion. It is anticipated that high risks to future residential occupiers of the site would be mitigated by the installation of hydrocarbon resistant "Protectaline" water supply pipework laid in clean lined trenches. These measures will need to be included within a remediation strategy document with suitable validation provided upon completion.

The volatilisation to indoor air pathway is considered to be the primary risk pathway for the impaction of human health receptors associated with a future residential development of the site. Risks to human health receptors from soil sourced, volatile hydrocarbon contamination can be mitigated by remedial action aimed at source removal and/or the installation of appropriate soil vapour barriers (hydrocarbon resistant membranes and suitable sub-floor venting etc.). However, in the absence of a firm development proposal this cannot be considered and assessed further at this stage.

Prior to confirming what mitigation measures are required, it is recommended that a site investigation be completed post demolition so full access to the bunded area and office is provided and to obtain up to date information on contaminant levels across other parts of the site. The results of this investigation would then be used to inform a human health detailed quantitative risk assessment (DQRA) with the aim of producing site specific remedial targets which can then inform future remediation design.

Human Health Risks – Groundworkers

It is likely that future groundworks or sub-surface maintenance works will be undertaken during future redevelopment works, during which the groundworkers may encounter contamination via direct contact and vapour / dust inhalation pathways. However, it is considered that the risk can be sufficiently mitigated by good working practices including the provision of appropriate PPE and good hygiene practise.

Human Health Risks – Offsite Residential Properties

The site investigation and subsequent results assessment has identified shallow groundwater impact across most of the site extending up to the boundaries with adjacent third-party properties. However, investigations on the site to the south and south-east of the site identified that the extent and mobility of LNAPL and dissolved phase contamination was limited and consequently risks to off-site human health are considered to be low.

It is anticipated that in the event of future residential development, increased infiltration rates, particularly after the removal of the hardstanding currently present across the entire footprint of the site, may lead to the mobilisation of free product and dissolved phase contamination. The risk of this will need to be assessed further as part of future risk assessment and could potential require remedial action to address this.

Controlled Waters Risks - Groundwater

The main controlled waters receptor has previously been identified as shallow groundwater beneath the site, although groundwater in the area is not considered to be highly sensitive due to the following:

- ★ There are no known potable abstractions or abstractions for other purposes within the vicinity of the site.
- ★ There is minimal potential for future use for public or private abstractions given the use of the area (no individual residential properties with gardens, presence of a large sewage works, etc).
- ★ Groundwater in the surrounding area has been proven to be impacted by contamination from a wider variety of sources.
- ★ There are a number of other sources which are likely to have affected local groundwater quality including the sewage works to the south and landfill sites to the west and south-east.

Elevated concentrations of dissolved phase contamination were identified across the site (principally in the south-east) during previous groundwater monitoring events, however dissolved phase hydrocarbon concentrations were significantly reduced across the area of the treatment zone upon completion of the DPVE remediation. On this basis, risks to the underlying Secondary A Aquifer with respect to LNAPL and dissolved phase contamination were considered to be significantly reduced.

A comparison of the levels of dissolved phase contamination from the post remediation monitoring event carried out in 2015 and the groundwater monitoring event completed in 2018 shows that the levels of dissolved contamination have slightly reduced.

A similar comparison of the thicknesses of LNAPL from 2015 and 2018 was also completed and the data appears to show that the presence of product within the monitoring wells is variable between monitoring visits (with the exception of WS201), although the maximum thickness of product has not varied significantly since remediation took place at site.

The proposed development is likely to include new and revised routes for services with older routes capped or removed. Given that the design of service routes should be done in such a way as to limit the potential for creation of preferential migration routes, impacts to controlled waters should be limited via this pathway.

On this basis, risks to controlled waters are not considered to have significantly changed since remediation took place at the site and consequently are considered to be moderate. However, the future development will change site conditions, specifically around infiltration rates and, therefore, further assessment of this risk, including potential controlled waters DQRA will be required.

Controlled Waters Risks – Surface water – Moor Ditch 310m south

Risks to the nearest offsite receptor (Moor Ditch approximately 310m south) have been identified as low given the distance to the Moor Ditch, the intervening land uses (including sewage works) and the identified reduction in contamination with distance from the site boundary from assessments on the property to the south.

6.2 Recommendations

Based upon the results of this assessment, the site poses a potential unacceptable risk to human health receptors in the context of the proposed future residential development and further investigation (including beneath currently inaccessible areas and risk assessment (including a human health DQRA) is considered necessary to assess the extent of remedial action required to mitigate associated risks to acceptable levels.

Once the additional risk assessments are complete and the extent of remediation is defined, a Remediation Options Appraisal (ROA) should be completed with the aim of producing a suitable remediation strategy to mitigate identified risks to acceptable levels (Remedial Target Values and / or Soil Saturation Limits). The remediation strategy should also include other mitigation proposed to render the site suitable for use including capping of landscaped areas, installation of upgraded water supply pipes and potential vapour membrane installation.

At present, OHES considers that the minimum remedial requirement for the site would be the removal / treatment of LNAPL and hydrocarbon saturated soils from beneath the site areas with the additional soil / groundwater remediation likely to be required to meet any remedial targets set by the DQRA. At this stage, it is anticipated that remediation would comprise a mixture of in-situ chemical oxidation and ex-situ treatment of groundwater, however this would be confirmed as part of the ROA. Based upon OHES' current understanding of the site, it is estimated that the area of hydrocarbon saturated soils that require treatment would cover an area of 1,200m² and extend up to 3.0m bgl (based upon existing soil saturation data). Depending on findings during the works this may be extended or reduced as areas of gross contamination will need to be 'chased out' during the works.

The success of any remediation works will be needed to be verified through a programme of validation testing (soils and water) and post remedial monitoring. The timeframe of any post remedial monitoring will be dependent upon the nature of remedial action undertaken.

FIGURES

ove ground from this point

ove ground Interceptor tank

cation of former soakaway pit / ut

pove ground from this point

APPENDIX 1

RISK ASSESSMENT METHODOLOGY

AND CLASSIFICATIONS

BASIS FOR QUALITATIVE RISK ASSESSMENT

The criteria used for risk assessment are broadly based on those presented in Section 6.3 of the CIRIA Report 'Contaminated Land Risk Assessment: A Guide to Good Practice' (CIRIA Report C552). The Severity of the risk is classified according to the criteria provided in the table below:

SEVERE	Acute risks to human health. Catastrophic damage to buildings/property (e.g. by explosion). Major pollution of controlled waters (watercourses or groundwater).
MEDIUM	Chronic (long-term) risk to human health. Pollution of sensitive controlled waters (surface waters or aquifers). Significant effects on sensitive ecosystems or species.
MILD	Pollution of non-sensitive waters. Significant damage to buildings or structures. Requirement for protective equipment during site works to mitigate health effects.
MINOR	Damage to non-sensitive ecosystems or species. Minor damage to buildings or structures.

The probability of the risk occurring is classified according to criteria given in the table below:

HIGH LIKELIHOOD	Pollutant linkage may be present, and risk is almost certain to occur in the long
	term, or there is evidence of harm to the receptor.
	Pollutant linkage may be present, and it is probable that the risk will occur over
LIKELT	the long term.
	Pollutant linkage may be present and there is a possibility of the risk occurring,
	although there is no certainty that it will do so.
UNLIKELY	Pollutant linkage may be present but the circumstances under which harm would
	occur are improbable.

An overall evaluation of level of risk is gained from a comparison of the severity and probability, as shown below:

		SEVERITY					
		SEVERE MEDIUM		MILD	MINOR		
	HIGH LIKELIHOOD	Very High Risk	High Risk	Moderate Risk	Moderate / Low Risk		
PROBABILITY	LIKELY	High Risk	Moderate Risk	Moderate / Low Risk	Low Risk		
	LOW LIKELIHOOD	Moderate Risk	Moderate / Low Risk	Low Risk	Very Low Risk		
	UNLIKELY	Moderate / Low Risk	Low Risk	Very Low Risk	Very Low Risk		

The various risk rankings provide guidance for recommended actions, whether this is:

AR - Action Required. Remediation, mitigation or site investigation works required
SIR - Site Investigation / Further Assessment Required.
NAR - No Action Required.

A description of the evaluated risk is as follows:

EVALUATED RISK	RECOMMENDED ACTIONS
Very High Risk	AR: There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High Risk	AR: Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the long term.
Moderate Risk	SIR: It is possible that harm could arise to a designated receptor from an identified hazard. However, it is relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
Low Risk	NAR: It is possible that harm could arise to a designated receptor from an identified hazard, but there is a low likelihood of this hazard occurring and if realised, harm would at worst normally be mild.
Very Low Risk	NAR: There is a low possibility that harm could arise to a receptor. In the event of such harm being realised, it is not likely to be severe.

APPENDIX 2

GROUNDWATER MONITORING

RESULTS
			F	PROJECT	PARTICU	LARS				E	QUIPI	MENT		C	ΣΤΥ U	SED	-	MOBIL	SATION	TIME / MILES	OHES			
Project Na	ame:		Southdow	n Oil - Tha	tcham					Interfa	ace P	robe:			x1			Left Base	:		ENVIRONMENTAL			
Project N	umber:		13053							PID:					x1			On Site:			Sheet:			
Personne	1:		PR & DP							New E	Bailer	S:			X5	5		Off Site:			<u>1 of 1 1</u>			
vveatner o	(mb):		Overcast,	clear	Tomporo			1		Pump	(m)				Perista	aitic		Back to B	ase:					
Flessure	(1115).			BORE	HOLE / W		RVATION	IS		TUDIT				5		ING		willeage.		BAI	ER / SAMPLE OBSERVATIONS			
			ŧ	0	ŭ	0201 			5	İ				Ī				٥						
LOCATION	TIME	Well I.D.	Reference Poi (+ bgl / - agl)	Borehole Headspace PI	Depth to Produ (DTP)	Depth to Wate (DTW)	Depth to Base (DTB)	Product Thickness	Height of Wate Column	Method	Volume	Bailer I.D.	Bails	500 ml Glass	250 ml Glass	S VOC Vial	3 Other	Sample Headspace PI	Product Thickness		NOTES			
BH01		50		0.0	NP	2 202	4 775	NP	2 573	P				1		2		ppm		Slightly firm base C	lear slight adour no sheen			
DITOT		50		0.0		2.202	4.775	INF	2.575	-		-	_	'		2					, sign oddi, no shoon.			
BH02		50		69.0	NP	2.198	3.928	NP	1.730	Р		_	_	1		2				Clear, slight odour, r	no sneen.			
BH03		50		ND	ND	ND	ND	ND	ND											Appears to be decor	mmissioned.			
BH04		50		0.0	NP	2.265	4.193	NP	1.928	Р				1		2				Water in well head.	Oily probe. Clear, slight odour, no sheen.			
BH05		50		0.0	NP	2.243	4.045	NP	1.802	Р				1		2				Clear, slight odour, r	no sheen.			
BH06		100		92.7	NP	2.333	4.030	NP	1.697	Р				1		2				Poor recharge, sampled post running dry. Cloudy brown slight sheen, no odour.				
BH07		100		0.5	NP	2.313	3.675	NP	1.362	Р				1		2				Slightly sludgey base. Clear, slight chemical odour, no sheen.				
BH08		100		38.1	NP	2.320	3.872	NP	1.552	Р						2				Product in sample post 4L purge. Oil sample taken from from BH. Amber orange product				
BH09		100		0.0	NP	2.190	3.495	NP	1.305	Р				1		2				Slightly cloudy grey,	slight odour.			
BH10		100		0.0	NP	2.222	3.000	NP	0.778	Р				1		2				Clear, odour, slightly	y ooily.			
BHA		50		0.0	NP	2.255	2.340	NP	0.085	Р				1		2				Firm base. Clear sta	agnant odour, no sheen.			
внв		50		1.1	NP	2.367	2.645	NP	0.278	Р				1		2				Clear, some suspen	ided sed, stagnant odour, no sheen.			
внс		50		92.9	NP	2.310	2.320	NP	0.010											Very slugedy base. I	Insufficent water column to sample.			
WS01		50		75.6	2.260	2.500	3.450	240	0.950	в						2				Product sample. Thi	ick black.			
WS02		50		27.4	NP	2.432	3.032	NP	0.600	Р				1		2				Odour on probe. Cle	ear, slight yellow tinge, no odour, no sheen.			
WS03		50		ND	ND	ND	ND	ND	ND											Under assorted furni	iture in storage area. Unable to access.			
WS201		50		51.2	2.253	2.308	3.860	55	1.552	в						2				Product sample. Thi	ick black.			
WS202		50		112.9	1.925	2.176	2.886	251	0.710	в						2				Product sample.Dar	'k red amber brown.			
WS204		50		0.0	NP	2.270	3.457	NP	1.187	Р				1		2				Slightly oily probe. C	Clear, slight yellow tinge, slight odour, no seen.			
WS203		50		173.5	1.705	1.722	2.282	17	0.560	в						2				Product sample take	en. Grey brown product.			
WS205		50		0.0	NP	2.362	3.392	NP	1.030	Р				1		2				Oily probe. Poor recl	harge. Clear, slight yellow tinge, slight odour, no seen.			
WS206		50		19.1	NP	2.295	3.310	NP	1.015	Р				1		2				Slightly oily probe. C	Clear, slight yellow tinge, slight odour, no seen.			
WS207		50		0.0	NP	2.380	3.502	NP	1.122	Р				1		2				Oily probe. Orange s sheen, odour.	suspeded sed.Dark grey cloudy with black suspended sed, slight			
WS207A		50		0.0	NP	2.375	3.000	NP	0.625	Р				1		2				Oily probe. Poor recl	harge. Dark grey cloudy slight odour, no sheen.			
WS208		50		4.6	NP	2.268	2.825	NP	0.557	Р				1		2				Oily probe. Cloudy g	rey, slight sheen, slight odour.			
WS209		50		0.0	NP	2.208	3.006	NP	0.798	Р				1		2				Clear, slight odour, r	no sheen.			
WS210		50		ND	ND	ND	ND	ND	ND											Appears to be decor	mmissioned.			
WS211		50		2.9	NP	2.220	4.000	NP	1.780	Р				1		2				Orange suspended s	sed on probe. Cloudy grey, suspended sed. slight odour, no sheen.			
WS212		50		1.3	NP	2.312	3.005	NP	0.693	Р				1		2				Orange suspended s	sed on probe. Cloudy grey, slight sheen, slight odour.			
WS301		50		0.0	NP	2.413	2.730	NP	0.317	Р				1		2				Oily probe. Cloudy brown, slight odour, no sheen.				
WS302		50		3.5	2.353	2.356	3.080	3	0.724	в						2				Product sample. Dark amber brown.				
			PUR	GING		FRENCE													NOTES					
Borehole	/ well I.D. (r	nm)	1.01	19	35	50	50	75	100	Grour	nd Le	vel (gl)	: Use	e neg	ative v	value	es for	above (ag	jl), use po	sitive values for below	/ (bgl), use 0.000 for at gl.			
Bailer I.D.	(mm)	rm		18	19	19	38	38	38	Purgin	ng reo	quires i radiue	emo in m	oving m an	3 well	l volu	imes iht in	prior to sa	mpling. N	lethod: B = Bailer, L =	= Litres via pump / footvalve. sulated by: πr ² h/1000			
3 well volu	umes per m	i (litre	s)	4	2	23	6	13	23	Assur	ned b	ailer le	ength	al 1:	0).95	m	, uie vol	Grey sha	ded columns are calc	sulated automatically.			

APPENDIX 3 CHEMICAL ANALYSIS REPORTS

OHES Environmental Unit 3, Forest Court

Off Fishponds Road

Wokingham Berkshire RG41 2FD

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Philippa Rawbone
Date :	14th September, 2018
Your reference :	13053
Our reference :	Test Report 18/14139 Batch 1
Location :	Thatcham
Date samples received :	6th September, 2018
Status :	Final report
Issue :	1

Twenty seven samples were received for analysis on 6th September, 2018 of which twenty seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied. All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

6 June

Bruce Leslie Project Co-ordinator

Client Name: Reference:	OHES En 13053	vironmenta	al				Report :	Liquid								
Location: Contact:	Philippa F	awbone					Liquids/pr	oducts: V=	40ml vial, G	0ml vial, G=glass bottle, P=plastic bottle						
JE Job No.:	18/14139						H=H ₂ SO ₄ , 3	Z=ZnAc, N=	NaOH, HN=	HN0 ₃	L					
J E Sample No.	1-3	4-6	7-9	10-12	17-19	20-22	23-25	26-28	29-31	34-36						
Sample ID	BH01	BHA	BHB	BH07	BH10	BH09	WS212	WS211	BH05	WS301						
Depth											Please se	e attached n	otes for all			
COC No / misc											abbrevi	ations and a	cronyms			
Containers	V G	V G	V G	V G	V G	V G	V G	V G	V G	V G						
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018						
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water						
Batak Newboo	circuita Water	circuite Water		circuite water	, around water	, around water	around water	, around water	circuita water	circuita water						
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No			
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018			140.			
PAH MS																
Naphthalene"	-	-	<0.1	-	0.2	0.4	-	<0.1	-	-	<0.1	ug/l	TM4/PM30			
Acenaphthylene "	-	-	0.095	-	1 729	0.174	-	0.032	-	-	<0.013	ug/l	TM4/PM30			
Eluorene #	-	_	2.022	-	3.537	1.619	-	0.327	-	-	<0.013	ug/l	TM4/PM30			
Phenanthrene [#]	-	-	0.041	-	1.136	0.740	-	0.059	-	-	<0.011	ug/l	TM4/PM30			
Anthracene #	-	-	0.045	-	0.022	0.016	-	0.016	-	-	<0.013	ug/l	TM4/PM30			
Fluoranthene#	-	-	0.017	-	0.026	0.014	-	0.097	-	-	<0.012	ug/l	TM4/PM30			
Pyrene #	-	-	0.035	-	0.062	0.036	-	0.114	-	-	<0.013	ug/l	TM4/PM30			
Benzo(a)anthracene #	-	-	<0.015	-	<0.015	<0.015	-	0.021	-	-	<0.015	ug/l	TM4/PM30			
Chrysene [#]	-	-	<0.011	-	<0.011	<0.011	-	0.035	-	-	<0.011	ug/l	TM4/PM30			
Benzo(bk)fluoranthene "	-	-	<0.018	-	<0.018	<0.018	-	0.029	-	-	<0.018	ug/l	TM4/PM30			
Benzo(a)pyrene "	-	-	<0.016	-	<0.016	<0.016	-	<0.010	-	-	<0.016	ug/l	TM4/PM30			
Dibenzo(ab)anthracene #	-	-	<0.01	-	<0.01	<0.01	-	<0.01	-	-	<0.01	ug/l	TM4/PM30			
Benzo(ghi)pervlene #	-	-	<0.011	-	<0.011	<0.011	-	<0.011	-	-	<0.011	ug/l	TM4/PM30			
PAH 16 Total [#]	-	-	2.938	-	7.015	3.707	-	0.780	-	-	<0.195	ug/l	TM4/PM30			
Benzo(b)fluoranthene	-	-	<0.01	-	<0.01	<0.01	-	0.02	-	-	<0.01	ug/l	TM4/PM30			
Benzo(k)fluoranthene	-	-	<0.01	-	<0.01	<0.01	-	<0.01	-	-	<0.01	ug/l	TM4/PM30			
PAH Surrogate % Recovery	-	-	85	-	92	84	-	84	-	-	<0	%	TM4/PM30			
Methyl Tertiary Butyl Ether #	-	-	-	-	-	-	<0.1	-	-	<0.1	<0.1	ug/l	TM15/PM10			
Benzene [#]	-	-	-	-	-	-	<0.5	-	-	<0.5	<0.5	ug/l	TM15/PM10			
Toluene #	-	-	-	-	-	-	<5	-	-	<5	<5	ug/l	TM15/PM10			
Ethylbenzene #	-	-	-	-	-	-	<1	-	-	<1	<1	ug/l	TM15/PM10			
p/m-Xylene "	-	-	-	-	-	-	<2	-	-	<2	<2	ug/l	TM15/PM10			
Surrogate Recovery Toluene D8	-	-	-	-	-	-	104	-	-	102	<0	" "	TM15/PM10			
Surrogate Recovery 4-Bromofluorobenzene	-	-	-	-	-	-	113	-	-	111	<0	%	TM15/PM10			
EPH \C8-C10	~10	140	20	30	_	_	-	120	~10	-	~10	ua/I	TM5/PM20			
EPH >C10-C12#	70	510	180	160	-	-	-	630	<10	-	<10	ug/l	TM5/PM30			
EPH >C12-C16 [#]	230	1520	670	630	-	-	-	1850	<10	-	<10	ug/l	TM5/PM30			
EPH >C16-C21 #	150	1660	730	770	-	-	-	2090	<10	-	<10	ug/l	TM5/PM30			
EPH >C21-C35#	<10	620	200	440	-	-	-	1610	<10	-	<10	ug/l	TM5/PM30			
EPH >C21-C40 #	<10	620	200	440	-	-	-	1610	<10	-	<10	ug/l	TM5/PM30			
EPH >C35-C40 #	<10	<10	<10	<10	-	-	-	<10	<10	-	<10	ug/l	TM5/PM30			
EPH >C8-C40	450	4450	1800	2030	-	-	-	6300	<10	-	<10	ug/l	TM5/PM30			

Client Name: Reference: Location:	OHES Environmental Report : Liquid 13053 Thatcham												
Contact: JE Job No.:	Philippa F 18/14139	awbone?					Liquids/pr H=H ₂ SO ₄ ,	oducts: V= Z=ZnAc, N=	40ml vial, G NaOH, HN=	i=glass bottl HN0 ₃	e, P=plastic	bottle	
J E Sample No.	1-3	4-6	7-9	10-12	17-19	20-22	23-25	26-28	29-31	34-36			
Sample ID	BH01	BHA	внв	BH07	BH10	BH09	WS212	WS211	BH05	WS301			
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	V G	V G	V G	V G	V G	V G	V G	V G	V G	V G			
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018			
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			
Batch Number	1			1	1	1	1	1	1	1			
Bate of Baselet	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018			
Aliphatics													
>C5-C6 [#]	-	-	-	-	<10	<10	<10	-	-	<10	<10	ug/l	TM36/PM12
>C6-C8#	-	-	-	-	<10	<10	<10	-	-	<10	<10	ug/l	TM36/PM12
>C8-C10 [#]	-	-	-	-	40	21	<10	-	-	<10	<10	ug/l	TM36/PM12
>C10-C12#	-	-	-	-	<5	<5	347	-	-	<5	<5	ug/l	TM5/PM16/PM30
>C12-C16#	-	-	-	-	<10	<10	1250	-	-	70	<10	ug/l	TM5/PM16/PM30
>C16-C21 #	-	-	-	-	<10	<10	1260	-	-	180	<10	ug/l	TM5/PM16/PM30
>C21-C35"	-	-	-	-	<10	<10	300	-	-	30	<10	ug/l	TM5/PM16/PM30
Aromatics	-	-	-	-	40	21	3157	-	-	200	<10	ug/i	
>C5-EC7#	-	-	-	-	<10	<10	<10	-	-	<10	<10	ug/l	TM36/PM12
>EC7-EC8#	-	-	-	-	<10	<10	<10	-	-	<10	<10	ug/l	TM36/PM12
>EC8-EC10 [#]	-	-	-	-	<10	<10	<10	-	-	<10	<10	ug/l	TM36/PM12
>EC10-EC12#	-	-	-	-	371	184	<5	-	-	80	<5	ug/l	TM5/PM16/PM30
>EC12-EC16#	-	-	-	-	240	150	350	-	-	60	<10	ug/l	TM5/PM16/PM30
>EC16-EC21 *	-	-	-	-	<10	<10	800	-	-	<10	<10	ug/l	TM5/PM16/PM30
>EU21-EU35	-	-	-	-	611	334	1440	-	-	140	<10	ug/i	TM5/TM36/PM12/PM16/PM30
Total aliphatics and aromatics(C5-35) #	-	-	-	-	651	355	4597	-	-	420	<10	ug/l	TM5/TM36/PM12/PM16/PM30
MTBE#	-	-	-	-	<5	<5	-	-	-	-	<5	ug/l	TM31/PM12
Benzene [#]	-	-	-	-	<5	<5	-	-	-	-	<5	ug/l	TM31/PM12
Toluene [#]	-	-	-	-	<5	<5	-	-	-	-	<5	ug/l	TM31/PM12
Etnyibenzene "	-	-	-	-	<5	<5	-	-	-	-	<0	ug/i	TM31/PM12
o-Xylene [#]	-	-	-	-	<5	<5	-	-	-	-	<5	ug/l	TM31/PM12

Client Name: Reference:	OHES En 13053	vironmenta	al				Report :	rt: Liquid						
Location:	Thatcham	ı												
Contact:	Philippa F	Rawbone					Liquids/pr	oducts: V=	40ml vial, G	i=glass bottl	e, P=plastic	bottle		
JE Job No.:	18/14139						$H=H_2SO_4$,	Z=ZnAc, N=	NaOH, HN=	HN0 ₃				
J E Sample No.	39-41	42-44	45-47	48-50	53-55	58-60	61-63	64-66	67-69	70-72				
Sample ID	WS207	WS207A	WS204	WS205	WS206	WS02	BH04	WS208	WS209	BH02				
Depth											Please se	e attached n	otes for all	
COC No / misc											abbrevi	ations and a	cronyms	
Containara	NG	NO	N C	N/C	N/C	NO	N/C	NG	NO	NO				
Containers	VG	VG	VG	VG	VG	VG	VG	VG	VG	VG				
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018				
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water				
Batch Number	1	1	1	1	1	1	1	1	1	1			Method	
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	LOD/LOR	Units	No.	
Nanhthalana [#]		-0.1					-0.1				-0.1	ug/l	TM4/PM20	
Naphthalene	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	ug/i	TM4/F1030	
Acenaphthylene "	-	<0.013	-	-	-	-	0.177	-	-	-	<0.013	ug/i	TIVI4/PIVI30	
Acenaphtnene "	-	0.068	-	-	-	-	0.459	-	-	-	<0.013	ug/i	TIVI4/PIVI30	
Fluorene "	-	0.114	-	-	-	-	1.037	-	-	-	<0.014	ug/i	TM4/PM30	
Phenanthrene "	-	<0.011	-	-	-	-	0.554	-	-	-	<0.011	ug/l	TM4/PM30	
Anthracene "	-	<0.013	-	-	-	-	<0.013	-	-	-	<0.013	ug/i	TM4/PM30	
Fluoranthene"	-	0.243	-	-	-	-	0.034	-	-	-	<0.012	ug/l	TM4/PM30	
Pyrene "	-	1.666	-	-	-	-	0.064	-	-	-	<0.013	ug/l	TM4/PM30	
Benzo(a)anthracene "	-	0.058	-	-	-	-	<0.015	-	-	-	<0.015	ug/l	TM4/PM30	
Chrysene"	-	0.382	-	-	-	-	<0.011	-	-	-	<0.011	ug/l	TM4/PM30	
Benzo(bk)fluoranthene"	-	0.165	-	-	-	-	<0.018	-	-	-	<0.018	ug/l	TM4/PM30	
Benzo(a)pyrene *	-	0.059	-	-	-	-	<0.016	-	-	-	<0.016	ug/l	TM4/PM30	
Indeno(123cd)pyrene*	-	0.035	-	-	-	-	<0.011	-	-	-	<0.011	ug/l	TM4/PM30	
Dibenzo(ah)anthracene "	-	<0.01	-	-	-	-	<0.01	-	-	-	<0.01	ug/l	TM4/PM30	
Benzo(ghi)perylene *	-	0.050	-	-	-	-	<0.011	-	-	-	<0.011	ug/l	TM4/PM30	
PAH 16 Total *	-	2.840	-	-	-	-	2.325	-	-	-	<0.195	ug/l	TM4/PM30	
Benzo(b)fluoranthene	-	0.12	-	-	-	-	<0.01	-	-	-	<0.01	ug/l	TM4/PM30	
Benzo(k)fluoranthene	-	0.05	-	-	-	-	<0.01	-	-	-	<0.01	ug/l	TM4/PM30	
PAH Surrogate % Recovery	-	92	-	-	-	-	89	-	-	-	<0	%	TM4/PM30	
Methyl Tertiary Butyl Ether #	<0.1	-	0.6	<0.1	0.1	<0.1	-	<0.1	-	0.7	<0.1	ug/l	TM15/PM10	
Benzene [#]	<0.5	-	2.4	<0.5	1.2	<0.5	-	<0.5	-	4.4	<0.5	ug/l	TM15/PM10	
Toluene [#]	<5	-	<5	<5	<5	<5	-	<5	-	<5	<5	ug/l	TM15/PM10	
Ethylbenzene #	<1	-	<1	<1	<1	<1	-	<1	-	<1	<1	ug/l	TM15/PM10	
p/m-Xylene #	<2	-	<2	<2	<2	<2	-	<2	-	<2	<2	ug/l	TM15/PM10	
o-Xylene [#]	<1	-	<1	<1	<1	<1	-	<1	-	<1	<1	ug/l	TM15/PM10	
Surrogate Recovery Toluene D8	102	-	104	105	106	104	-	108	-	107	<0	%	TM15/PM10	
Surrogate Recovery 4-Bromofluorobenzene	109	-	111	109	109	108	-	111	-	110	<0	%	TM15/PM10	
EPH >C8-C10	-	-	-	-	-	-	130	-	50	-	<10	ug/l	TM5/PM30	
EPH >C10-C12#	-	-	-	-	-	-	430	-	140	-	<10	ug/l	TM5/PM30	
EPH >C12-C16*	-	-	-	-	-	-	890	-	370	-	<10	ug/l	1M5/PM30	
EPH >C16-C21 #	-	-	-	-	-	-	470	-	210	-	<10	ug/l	TM5/PM30	
EPH >C21-C35#	-	-	-	-	-	-	110	-	<10	-	<10	ug/l	TM5/PM30	
EPH >C21-C40*	-	-	-	-	-	-	110	-	<10	-	<10	ug/l	TM5/PM30	
EPH >C35-C40 #	-	-	-	-	-	-	<10	-	<10	-	<10	ug/l	TM5/PM30	
EPH >C8-C40	-	-	-	-	-	-	2030	-	770	-	<10	ug/l	TM5/PM30	

Client Name: Reference: Location:	OHES En 13053 Thatcham	vironmenta 1	al				Report :	Liquid					
Contact: JE Job No.:	Philippa F 18/14139	lawbone					Liquids/pr H=H ₂ SO ₄ , 2	oducts: V= Z=ZnAc, N=	40ml vial, G NaOH, HN=	i=glass bottl ∶HN0₃	e, P=plastic	bottle	
J E Sample No.	39-41	42-44	45-47	48-50	53-55	58-60	61-63	64-66	67-69	70-72	1		
Sample ID	WS207	WS207A	WS204	WS205	WS206	WS02	BH04	WS208	WS209	BH02			
Depth											Diama		ata a fan all
COC No / misc											Please se abbrevi	e attached n ations and a	otes for all cronyms
Containara	VC	VC	VC	VC	NC	NC	NC	NC	VC	NC			
Containers	V G	V G	V G	V G	V G	V G	V G	V G	V G	V G			
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018			
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			1
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018			NO.
TPH CWG													
Aliphatics	10	10	10	10	10	10		10		10	10		THOSEDALO
>C5-C6 "	<10	<10	<10	<10	<10	<10	-	<10	-	<10	<10	ug/i	TM36/PM12
>C8-C10#	246	36	<10	<10	13	<10	-	<10	-	54	<10	ug/i	TM36/PM12
>C10-C12 [#]	1563	2123	<5	3412	<5	1837	-	130	-	<5	<5	ug/l	TM5/PM16/PM30
>C12-C16#	3760	9850	<10	7760	<10	1480	-	610	-	<10	<10	ug/l	TM5/PM16/PM30
>C16-C21#	3040	10810	<10	6780	<10	<10	-	980	-	<10	<10	ug/l	TM5/PM16/PM30
>C21-C35#	1720	5700	<10	2220	<10	350	-	380	-	<10	<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35#	10329	28519	<10	20172	13	3667	-	2100	-	67	<10	ug/l	TM5/TM36/PM12/PM16/PM3
Aromatics												-	
>C5-EC7*	<10	<10	<10	<10	<10	<10	-	<10	-	<10	<10	ug/l	TM36/PM12
>EC7-EC8"	<10	<10	<10	<10	<10	<10	-	<10	-	<10	<10	ug/i	TM36/PM12
>EC10-EC12#	390	487	145	377	237	<5	-	112	-	324	<5	ug/l	TM5/PM16/PM30
>EC12-EC16 [#]	1040	3790	220	1940	240	<10	-	400	-	290	<10	ug/l	TM5/PM16/PM30
>EC16-EC21 #	1180	8090	<10	3440	30	<10	-	810	-	30	<10	ug/l	TM5/PM16/PM30
>EC21-EC35#	550	4180	<10	1240	<10	<10	-	240	-	<10	<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 #	3160	16547	365	6997	507	<10	-	1562	-	644	<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics and aromatics(C5-35) #	13489	45066	365	27169	520	3667	-	3662	-	711	<10	ug/l	TM5/TM36/PM12/PM16/PM3
		F									5		TM21/DM12
MIBE"	-	<5	-	-	-	-	-	-	-	-	<5	ug/i	TM31/PM12
Toluene #	-	<5	-	-	-	-	-	-	-	-	<5	ug/l	TM31/PM12
Ethylbenzene #	-	<5	-	-	-	-	-	-	-	-	<5	ug/l	TM31/PM12
m/p-Xylene #	-	<5	-	-	-	-	-	-	-	-	<5	ug/l	TM31/PM12
o-Xylene [#]	-	<5	-	-	-	-	-	-	-	-	<5	ug/l	TM31/PM12

Client Name: Reference: Location: Contact: JE Job No.:

OHES Environmental 13053 Thatcham Philippa Rawbone 18/14139

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3

		1					1		
J E Sample No.	73-75								
Sample ID	BH06								
Depth							Plaza co	o attached n	otos for all
COC No / misc							abbrevi	ations and a	cronyms
Contoinon									
Containers	VG								
Sample Date	05/09/2018								
Sample Type	Ground Water								
Batch Number	1								Method
Date of Receipt	06/09/2018						LOD/LOR	Units	No.
PAH MS						 			
Naphthalene [#]	-						<0.1	ug/l	TM4/PM30
Acenaphthylene #	-						<0.013	ug/l	TM4/PM30
Acenaphthene #	-						<0.013	ug/l	TM4/PM30
Fluorene [#]	-						<0.014	ug/l	TM4/PM30
Phenanthrene [#]	-						<0.011	ug/l	TM4/PM30
Anthracene #	-						<0.013	ug/l	TM4/PM30
Fluoranthene [#]	-						<0.012	ug/l	TM4/PM30
Pyrene #	-						<0.013	ug/l	TM4/PM30
Benzo(a)anthracene #	-						<0.015	ug/l	TM4/PM30
Chrysene #	-						<0.011	ug/l	TM4/PM30
Benzo(bk)fluoranthene #	-						<0.018	ug/l	TM4/PM30
Benzo(a)pyrene [#]	-						<0.016	ug/l	TM4/PM30
Indeno(123cd)pyrene#	-						<0.011	ug/l	TM4/PM30
Dibenzo(ah)anthracene #	-						<0.01	ug/l	TM4/PM30
Benzo(ghi)perylene #	-						<0.011	ug/l	TM4/PM30
PAH 16 Total [#]	-						<0.195	ug/l	TM4/PM30
Benzo(b)fluoranthene	-						<0.01	ug/l	TM4/PM30
Benzo(k)fluoranthene	-						<0.01	ug/l	TM4/PM30
PAH Surrogate % Recovery	-						<0	%	TM4/PM30
Methyl Tertiary Butyl Ether #	<0.1						<0.1	ug/l	TM15/PM10
Benzene#	<0.5						<0.5	ug/l	TM15/PM10
Toluene #	<5						<5	ug/l	TM15/PM10
Ethylbenzene #	<1						<1	ug/l	TM15/PM10
p/m-Xylene [#]	<2						<2	ug/l	TM15/PM10
o-Xylene [#]	<1						<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	106						<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	109						<0	%	TM15/PM10
EPH >C8-C10	-						<10	ug/l	TM5/PM30
EPH >C10-C12"	-						<10	ug/l	TM5/PM30
EPH >C12-C16"	-						<10	ug/l	TM5/PM30
EPH >C16-C21 "	-						<10	ug/l	TM5/PM30
EPH >C21-C35"	-						<10	ug/l	TM5/PM30
EPH >C21-C40"	-						<10	ug/i	TM5/PM30
EPH >035-040	-						<10	ug/i	
LF A >00-040	-						<10	ug/I	1 1015/1210130
		1							

Client Name: Reference: Location: Contact: JE Job No.:

OHES Environmental 13053 Thatcham Philippa Rawbone 18/14139

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3

J E Sample No.	73-75								
Sample ID	BH06								
Depth							Please se	e attached n	notes for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	VG								
Ocumula Pata									
Sample Date	05/09/2018								
Sample Type	Ground Water								n.
Batch Number	1						LOD/LOB	Units	Method
Date of Receipt	06/09/2018						200,2011	CTILC	No.
TPH CWG									
Aliphatics									
>C5-C6 #	<10						<10	ug/l	TM36/PM12
>C6-C8 [#]	<10						<10	ug/l	TM36/PM12
>C8-C10 [#]	<10						<10	ug/l	TM36/PM12
>C10-C12*	<5						<5	ug/l	TM5/PM16/PM30
>C12-C16"	<10						<10	ug/l	TM5/PM16/PM30
>016-021 "	<10						<10	ug/i	TM5/PM16/PM30
>021-033	<10						<10	ug/i	TM5/TM36/PM12/PM16/PM3
Aromatics								ugn	
>C5-EC7#	<10						<10	ug/l	TM36/PM12
>EC7-EC8 [#]	<10						<10	ug/l	TM36/PM12
>EC8-EC10 [#]	<10						<10	ug/l	TM36/PM12
>EC10-EC12#	<5						<5	ug/l	TM5/PM16/PM30
>EC12-EC16 [#]	<10						<10	ug/l	TM5/PM16/PM30
>EC16-EC21#	<10						<10	ug/l	TM5/PM16/PM30
>EC21-EC35#	<10						<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 #	<10						<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics and aromatics(C5-35) #	<10						<10	ug/l	TM5/TM38/PM12/PM16/PM3
MTBE#	-						<5	ug/l	TM31/PM12
Benzene"	-						<5	ug/l	TM31/PM12
l oluene "	-						<0	ug/i	TM31/PM12
m/n-Xvlene#	_						<5	ug/l	TM31/PM12
o-Xvlene [#]	-						<5	ug/l	TM31/PM12
								-9,1	
	1	1					1	1	1

Client Name: Reference:	OHES En 13053	vironmenta	al				Report :	Product					
Location: Contact:	Thatcham Philippa F	awbone					Liquids/pr	oducts: V=	40ml vial, G	i=glass bott	le, P=plastic	bottle	
JE Job No.:	18/14139	-		-	-		H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃	-		
J E Sample No.	13-14	15-16	32-33	37-38	51-52	56-57							
Sample ID	BH08	WS203	WS202	WS302	WS201	WS01							
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and ac	cronyms
Containers	v	v	v	v	v	v							
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018							
Sample Type	Product	Product	Product	Product	Product	Product							
Batch Number	1	1	1	1	1	1							Method
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018					LOD/LOR	Units	No.
Whole Oil Trace	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	1					None	TM1/PM0

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
IT Job Maria	10/14100

SVOC Report : Liquid

JE Job No.:	18/14139												
J E Sample No.	23-25	34-36	39-41	45-47	48-50	53-55	58-60	64-66	70-72	73-75			
Sample ID	WS212	WS301	WS207	WS204	WS205	WS206	WS02	WS208	BH02	BH06			
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevia	tions and ac	cronyms
Containers Sample Date	V G	V G	V G	V G	V G	V G	V G	V G	V G	V G			
Sample Date	Ground Water												
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	LOD/LOR	Units	No.
SVOC MS													
2-Chlorophenol [#]	~1	~1	~1	~1	<1	<1	<1	~1	<i>c</i> 1	<1	-1	ug/l	TM16/PM30
2-Methylphenol #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
2,4-Dimethylphenol	<1	<1	<1	2	<1	<1	3	<1	<1	<1	<1	ug/l	TM16/PM30
2,4,5-Trichlorophenol "	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30 TM16/PM30
4-Chloro-3-methylphenol #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Phenoi	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/i	110116/P1030
2-Chloronaphthalene [#]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
2-Methylnaphthalene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Naphthalene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Acenaphthylene #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
Eluorene #	<0.5	1.5	4.5	1.5	<0.5	<1 4.7	<0.5	<0.5	5.0	<0.5	<0.5	ug/l	TM16/PM30
Phenanthrene [#]	<0.5	<0.5	2.2	<0.5	<0.5	<0.5	<0.5	<0.5	4.2	<0.5	<0.5	ug/l	TM16/PM30
Anthracene #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
Fluoranthene#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
Pyrene " Ponzo(a)anthracono #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30 TM16/PM30
Chrysene [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
Benzo(bk)fluoranthene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Benzo(a)pyrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Indeno(123cd)pyrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Dibenzo(ah)anthracene "	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/i	TM16/PM30 TM16/PM30
Phthalates												-9.	
Bis(2-ethylhexyl) phthalate	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Di-n-butyl phthalate "	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	ug/l	TM16/PM30 TM16/PM30
Diethyl phthalate [#]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
		1									1		

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
IE Joh No i	10/1/120

SVOC Report : Liquid

JE JOD NO.:	10/14139												
J E Sample No.	23-25	34-36	39-41	45-47	48-50	53-55	58-60	64-66	70-72	73-75			
Sample ID	WS212	WS301	WS207	WS204	WS205	WS206	WS02	WS208	BH02	BH06			
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevia	ations and ad	cronyms
Containers	V G	V G	V G	V G	V G	V G	V G	V G	V G	V G			
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018			
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	LOD/LON	Units	No.
SVOC MS													
Other SVOCs													
1,2-Dichlorobenzene#	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
1,3-Dichlorobenzene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
1,4-Dichlorobenzene *	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
2,4-Dinitrotoluene "	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/i	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/i	TM16/PM20
4 Bromonhonylphonylothor [#]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
4-Bromophenyiphenyiether	<1	<1	<1	~1	~1	<1	~1	~1	~1	<1	<1	ug/l	TM16/PM30
4-Chlorophenylphenylether#	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
4-Oniorophenyiphenyiether 4-Nitroaniline	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
Azobenzene [#]	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	ua/l	TM16/PM30
Bis(2-chloroethoxy)methane#	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Carbazole [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	ug/l	TM16/PM30
Dibenzofuran [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	ug/l	TM16/PM30
Hexachlorobenzene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Hexachlorobutadiene#	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Hexachloroethane #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Isophorone #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ug/l	TM16/PM30
Nitrobenzene *	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	119	117	118	110	109	111	106	109	113	110	<0	%	TM16/PM30
Surrogale Recovery p-reiphenyi-ur4	124	120	120	124	113	125	117	120	125	123	<0	70	110110/11030

Client Name:	OHES
Reference:	13053
Location:	Thatch
Contact:	Philipp
JE Job No.:	18/141

OHES Environmental 13053 Thatcham Philippa Rawbone 18/14139

VOC Report : Liquid

J E Sample No.	23-25	34-36	39-41	45-47	48-50	53-55	58-60	64-66	70-72	73-75			
Sample ID	WS212	WS301	WS207	WS204	WS205	WS206	WS02	WS208	BH02	BH06			
Depth											Please see attached notes for all abbreviations and acronyms		
COC NO / MISC	VG	2001011		a onyma									
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018			
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018			No.
VOC MS Dichlorodifluoromethane	-2	-2	-2	-2	-2	-2	-2	-2	2	<2	-2	ua/l	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1	0.6	<0.1	0.1	<0.1	<0.1	0.7	<0.1	<0.1	ug/l	TM15/PM10
Chloromethane [#]	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Vinyl Chloride #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM15/PM10
Chloroethane "	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1.1-Dichloroethene (1.1 DCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Dichloromethane (DCM) #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/l	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene "	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Bromochloromethane [#]	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/I	TM15/PM10
Chloroform #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,1-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Carbon tetrachloride #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
I,2-Dichloroethane*	<0.5	<0.5	<0.5	24	<0.5	12	<0.5	<0.5	<2 4 4	<0.5	<0.5	ug/i	TM15/PM10
Trichloroethene (TCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,2-Dichloropropane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Dibromomethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Toluene [#]	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/i	TM15/PM10 TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,2-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Tetrachloroethene (PCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,3-Dichloropropane "	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1 2-Dibromoethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/i	TM15/PM10
Chlorobenzene #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/l	TM15/PM10
p/m-Xylene "	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/i ug/l	TM15/PM10
Bromoform #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
lsopropylbenzene [#]	<3	<3	3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/l	TM15/PM10
Bromobenzene "	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
Propylbenzene [#]	<3	<3	3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
4-Chlorotoluene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
tert-Butylbenzene"	<3	3	6	<3	<3	3	<3	<3	6	<3	<3	ug/I	TM15/PM10 TM15/PM10
sec-Butylbenzene#	<3	<3	3	<3	<3	<3	<3	<3	3	<3	<3	ug/l	TM15/PM10
4-Isopropyltoluene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,3-Dichlorobenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
1,4-Dichlorobenzene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
n-Butylbenzene"	<3	<3	<3	<3	<3	<3	<3	<3	<3 ~3	<3	<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM15/PM10
Naphthalene	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3 104	<3 102	<3 102	<3 104	<3 105	<3 106	<3 104	<3 108	<3 107	<3 106	<3 _0	ug/l	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	113	111	109	111	109	109	108	<u>100</u>	110	109	<0	%	TM15/PM10

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
18/14139	1	BH01		1-3	Unknown pattern
18/14139	1	BHA		4-6	Degraded diesel
18/14139	1	BHB		7-9	Dissolved phase compounds
18/14139	1	BH07		10-12	Dissolved phase compounds
18/14139	1	BH10		17-19	Dissolved phase aromatics
18/14139	1	BH09		20-22	Dissolved phase aromatics
18/14139	1	WS212		23-25	Degraded diesel
18/14139	1	WS211		26-28	Dissolved phase compounds
18/14139	1	BH05		29-31	No interpretation possible
18/14139	1	WS301		34-36	Dissolved phase compounds
18/14139	1	WS207		39-41	Degraded diesel
18/14139	1	WS207A		42-44	Degraded diesel
18/14139	1	WS204		45-47	Dissolved phase aromatics
18/14139	1	WS205		48-50	Degraded diesel
18/14139	1	WS206		53-55	Dissolved phase aromatics
18/14139	1	WS02		58-60	Degraded diesel
18/14139	1	BH04		61-63	Dissolved phase compounds
18/14139	1	WS208		64-66	Degraded diesel
18/14139	1	WS209		67-69	Dissolved phase compounds
18/14139	1	BH02		70-72	Dissolved phase aromatics
18/14139	1	BH06		73-75	No interpretation possible

Matrix : Liquid

Exova Jones E	nvironmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	3
Location:	Thatcham	Sample Identity:	BH01
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones En	<i>vironmental</i>		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	6
Location:	Thatcham	Sample Identity:	BHA
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones E	nvironmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	9
Location:	Thatcham	Sample Identity:	BHB
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones E	Environmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	12
Location:	Thatcham	Sample Identity:	BH07
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Client Name: OHES Environmental JE Job No.: 18/14139 13053 19 **Reference:** JE Sample No.: Location: Thatcham BH10 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Client Name: OHES Environmental JE Job No.: 18/14139 13053 19 **Reference:** JE Sample No.: Location: Thatcham BH10 Sample Identity: Contact: Philippa Rawbone Depth: Matrix: Liquid

Client Name: OHES Environmental JE Job No.: 18/14139 13053 22 **Reference:** JE Sample No.: Location: Thatcham BH09 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Client Name: OHES Environmental JE Job No.: 18/14139 13053 22 **Reference:** JE Sample No.: Location: Thatcham BH09 Sample Identity: Contact: Philippa Rawbone Depth: Matrix: Liquid

-			
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	25
Location:	Thatcham	Sample Identity:	WS212
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones I	Environmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	28
Location:	Thatcham	Sample Identity:	WS211
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones E	Environmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	31
Location:	Thatcham	Sample Identity:	BH05
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

OHES Environmental	JE Job No.:	18/14139
13053	JE Sample No.:	36
Thatcham	Sample Identity:	WS301
Philippa Rawbone	Depth:	
	Matrix:	Liquid
	OHES Environmental 13053 Thatcham Philippa Rawbone	OHES EnvironmentalJE Job No.:13053JE Sample No.:ThatchamSample Identity:Philippa RawboneDepth:Matrix:Matrix

Client Name: OHES Environmental JE Job No.: 18/14139 13053 **Reference:** JE Sample No.: 36 Location: Thatcham WS301 Sample Identity: Contact: Philippa Rawbone Depth: Matrix: Liquid

Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	41
Location:	Thatcham	Sample Identity:	WS207
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

J. J			
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	41
Location:	Thatcham	Sample Identity:	WS207
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones Environmental Client Name: OHES Environmental JE Job No.: 18/14139 13053 44 **Reference:** JE Sample No.: Location: Thatcham WS207A Sample Identity: Philippa Rawbone Contact: Depth: Matrix: Liquid

Client Name: OHES Environmental JE Job No.: 18/14139 13053 47 **Reference:** JE Sample No.: Location: Thatcham WS204 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Client Name: OHES Environmental JE Job No.: 18/14139 13053 47 **Reference:** JE Sample No.: Location: Thatcham WS204 Sample Identity: Contact: Philippa Rawbone Depth: Matrix: Liquid

Exova Jones E	nvironmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	50
Location:	Thatcham	Sample Identity:	WS205
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	50
Location:	Thatcham	Sample Identity:	WS205
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Client Name: OHES Environmental JE Job No.: 18/14139 13053 55 **Reference:** JE Sample No.: Location: Thatcham WS206 Sample Identity: Philippa Rawbone Contact: Depth: Liquid Matrix:

QF-PM 3.1.12 v1

Client Name: OHES Environmental JE Job No.: 18/14139 13053 55 **Reference:** JE Sample No.: Location: Thatcham WS206 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Client Name: OHES Environmental JE Job No.: 18/14139 13053 60 **Reference:** JE Sample No.: Location: Thatcham WS02 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Exova Jones E	Environmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	63
Location:	Thatcham	Sample Identity:	BH04
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones I	Environmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	66
Location:	Thatcham	Sample Identity:	WS208
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones E	nvironmental		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	66
Location:	Thatcham	Sample Identity:	WS208
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Exova Jones En	<i>wironmental</i>		
Client Name:	OHES Environmental	JE Job No.:	18/14139
Reference:	13053	JE Sample No.:	69
Location:	Thatcham	Sample Identity:	WS209
Contact:	Philippa Rawbone	Depth:	
		Matrix:	Liquid

Client Name: OHES Environmental JE Job No.: 18/14139 13053 72 **Reference:** JE Sample No.: Location: Thatcham BH02 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Client Name: OHES Environmental JE Job No.: 18/14139 13053 72 **Reference:** JE Sample No.: Location: Thatcham BH02 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Client Name: OHES Environmental JE Job No.: 18/14139 13053 75 **Reference:** JE Sample No.: Location: Thatcham BH06 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Client Name: OHES Environmental JE Job No.: 18/14139 13053 75 **Reference:** JE Sample No.: Location: Thatcham BH06 Sample Identity: Contact: Philippa Rawbone Depth: Liquid Matrix:

Exova Jones Environmental

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
Description:	Brown Oil
Carbon Range:	8-28
Boiling Point Range (°C):	126-432
Pristane/Phytane Ratio:	1.28
nC ₁₇ /Pristane Ratio:	0.01
Age of Diesel (+/- 2 years)*:	20
Interpretation:	Degraded Diesel

 JE Job No.:
 18/14139

 JE Sample No.:
 13

 Sample Identity:
 BH08

 Depth:
 13

Chromatogram:

Exova Jones Environmental

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
Description:	Brown Oil
Carbon Range:	8-28
Boiling Point Range (°C):	126-432
Pristane/Phytane Ratio:	1.24
nC ₁₇ /Pristane Ratio:	0.01
Age of Diesel (+/- 2 years)*:	20
Interpretation:	Degraded Diesel

 JE Job No.:
 18/14139

 JE Sample No.:
 15

 Sample Identity:
 WS203

 Depth:

Chromatogram:

Exova Jones Environmental

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
Description:	Brown Oil
Carbon Range:	8-28
Boiling Point Range (°C):	126-432
Pristane/Phytane Ratio:	1.28
nC ₁₇ /Pristane Ratio:	0.01
Age of Diesel (+/- 2 years)*:	20
Interpretation:	Degraded Diesel

JE Job No.: 18/14139 JE Sample No.: 32 Sample Identity: WS202 Depth:

Chromatogram:

Exova Jones Environmental

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
Description:	Dark Brown Oil
Carbon Range:	8-28
Boiling Point Range (°C):	126-432
Pristane/Phytane Ratio:	1.25
nC ₁₇ /Pristane Ratio:	0.01
Age of Diesel (+/- 2 years)*:	20
Interpretation:	Degraded Diesel

Chromatogram:

*The age of release estimated in this report is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996). Age estimation should be treated with caution as it can be influenced by site specific factors that the laboratory are not aware of.

JE Job No.:

Depth:

JE Sample No.:

Sample Identity:

18/14139

WS302

37

Exova Jones Environmental

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
Description:	Dark Brown Oil
Carbon Range:	8-28
Boiling Point Range (°C):	126-432
Pristane/Phytane Ratio:	1.27
nC ₁₇ /Pristane Ratio:	0.01
Age of Diesel (+/- 2 years)*:	20
Interpretation:	Degraded Diesel

 JE Job No.:
 18/14139

 JE Sample No.:
 51

 Sample Identity:
 WS201

 Depth:

Chromatogram:

Exova Jones Environmental

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone
Description:	Brown Oil
Carbon Range:	8-28
Boiling Point Range (°C):	126-432
Pristane/Phytane Ratio:	1.3
nC ₁₇ /Pristane Ratio:	0.01
Age of Diesel (+/- 2 years)*:	20
Interpretation:	Degraded Diesel

 JE Job No.:
 18/14139

 JE Sample No.:
 56

 Sample Identity:
 WS01

 Depth:

Chromatogram:

Exova Jones Environmental

Client Name:	OHES Environmental
Reference:	13053
Location:	Thatcham
Contact:	Philippa Rawbone

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 18/14139	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/14139

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Exova Jones Environmental

Method Code Appendix

JE Job No: 18/14139

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM1	Modified USEPA 8015B method for the determination of carbon banding in oil and product samples by GC-FID.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.				
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

Exova Jones Environmental

Method Code Appendix

JE Job No: 18/14139

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

OHES

1 The Courtyard

Denmark Street

Wokingham Berkshire RG40 2AZ

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Matthew Thomas
Date :	23rd June, 2015
Your reference :	6977
Our reference :	Test Report 15/8872 Batch 1
Location :	Thatcham
Date samples received :	18th June, 2015
Status :	Final report
Issue :	1

Nine samples were received for analysis on 18th June, 2015 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

6 Jul

Bruce Leslie Project Co-ordinator

Ruillward

Bob Millward BSc FRSC Principal Chemist

Jones Environmental Laboratory

Client Name:	OHES						Report :	Liquid					
Reference:	6977												
Location:	I hatcham	l Thomas							10		D I I	L . 111.	
Contact:	15/8872	inomas					H-H-SO	oducts: V= 7-7nΔc N-	40ml vial, G	i=glass bottl HNO-	e, P=plastic	bottle	
JE 300 NO	13/0072		1	1	1	1	n=n ₂ 30 ₄ , .	Z=ZNAC, N=			1		
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27				
Sample ID	BH301	BH308	WS03	WS201	WS02	BH303	WS205	WS206	WS211				
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	V G	V G	V G	V G	V G	V G	V G	V G	V G				
Sample Date	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015				
	17/00/2013	17700/2013	17/00/2013	17/00/2013	17/00/2013	17/00/2013	17/00/2013	17700/2013	17/00/2013				
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water								
Batch Number	1	1	1	1	1	1	1	1	1			Unite	Method
Date of Receipt	18/06/2015	18/06/2015	18/06/2015	18/06/2015	18/06/2015	18/06/2015	18/06/2015	18/06/2015	18/06/2015		LOD/LON	OTILS	No.
TPH CWG													
Aliphatics													
>C5-C6 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
>C6-C8 #	<5	<5	<5	71	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
>C8-C10 [#]	7	116	18	1786	1043	356	28	29	6		<5	ug/l	TM36/PM12
>C10-C12#	<5	34	1319	45	20269 _{AA}	717	<5	78	<5		<5	ug/l	TM5/PM30
>C12-C16#	<10	80	3540	1780	50260 _{AA}	1810	<10	530	<10		<10	ug/l	TM5/PM30
>C16-C21#	<10	30	3360	1740	48930 _{AA}	1550	<10	2500	<10		<10	ug/l	TM5/PM30
>C21-C35#	<10	<10	650	570	14610 _{AA}	290	<10	750	<10		<10	ug/l	TM5/PM30
Total aliphatics C5-35 #	<10	260	8887	5992	135112 _{AA}	4723	28	3887	<10		<10	ug/l	TM5/TM36/PM30
Aromatics													
>C5-EC7#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
>EC7-EC8 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
>EC8-EC10#	<5	8	<5	190	20	6	<5	<5	<5		<5	ug/l	TM36/PM12
>EC10-EC12#	36	230	436	1065	7243	393	133	76	<5		<5	ug/l	TM5/PM30
>EC12-EC16#	30	300	1870	1840	27960	1060	150	460	<10		<10	ug/l	TM5/PM30
>EC16-EC21 #	<10	170	2450	1530	35750	1200	<10	2420	<10		<10	ug/l	TM5/PM30
>EC21-EC35#	<10	<10	390	310	10880	250	<10	990	<10		<10	ug/l	TM5/PM30
Total aromatics C5-35 [#]	66	708	5146	4935	81853	2909	283	3946	<10		<10	ug/l	TM5/PM30
Total aliphatics and aromatics(C5-35) #	66	968	14033	10927	216965	7632	311	7833	<10		<10	ug/l	TM5/TM36/PM30
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
Toluene#	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
Ethylbenzene *	<5	<5	<5	46	6	<5	<5	<5	<5		<5	ug/l	TM36/PM12
m/p-Xylene "	<5	<5	<5	100	<5	<5	<5	<5	<5		<5	ug/l	TM36/PM12
o-Xylene "	<5	<5	<5	44	11	6	<5	<5	<5		<5	ug/l	TM36/PM12
													1

Jones Environmental Laboratory **Client Name:** OHES JE Job No.: 15/8872 6977 **Reference:** JE Sample No.: 3 Location: Thatcham BH301 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 **Reference:** JE Sample No.: 3 Location: Thatcham BH301 Sample Identity: Matthew Thomas Contact: Depth:

Jones Environmental Laboratory **Client Name:** OHES JE Job No.: 15/8872 6977 **Reference:** JE Sample No.: 6 Location: Thatcham BH308 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8872
Reference:	6977	JE Sample No.:	6
Location:	Thatcham	Sample Identity:	BH308
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 **Reference:** JE Sample No.: 9 Location: Thatcham WS03 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 **Reference:** JE Sample No.: 9 Location: Thatcham WS03 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 12 **Reference:** JE Sample No.: Location: Thatcham WS201 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 12 **Reference:** JE Sample No.: Location: Thatcham WS201 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8872
Reference:	6977	JE Sample No.:	15
Location:	Thatcham	Sample Identity:	WS02
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Enviro	nmental Laboratory		
Client Name:	OHES	JE Job No.:	15/8872
Reference:	6977	JE Sample No.:	15
Location:	Thatcham	Sample Identity:	WS02
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 18 **Reference:** JE Sample No.: Location: Thatcham BH303 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 18 **Reference:** JE Sample No.: Location: Thatcham BH303 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8872 6977 21 **Reference:** JE Sample No.: Location: Thatcham WS205 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8872
Reference:	6977	JE Sample No.:	21
Location:	Thatcham	Sample Identity:	WS205
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environmental Laboratory **Client Name:** OHES JE Job No.: 15/8872 6977 JE Sample No.: **Reference:** 24 Location: Thatcham WS206 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

Jones Enviro	nmental Laboratory		
Client Name:	OHES	JE Job No.:	15/8872
Reference:	6977	JE Sample No.:	24
Location:	Thatcham	Sample Identity:	WS206
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Matthew Thomas

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason				
	No deviating sample report results for job 15/8872									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 15/8872

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x2 Dilution

JE Job No: 15/8872

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
ТМ36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

OHES

1 The Courtyard

Denmark Street

Wokingham Berkshire RG40 2AZ

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Matthew Thomas
Date :	23rd June, 2015
Your reference :	6977
Our reference :	Test Report 15/8871 Batch 1
Location :	Thatcham
Date samples received :	18th June, 2015
Status :	Final report
Issue :	1

Eight samples were received for analysis on 18th June, 2015 of which eight were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

6 Jul

Bruce Leslie Project Co-ordinator

Ruillward

Bob Millward BSc FRSC Principal Chemist

Client Name:	OHES						Report :	Liquid					
Reference:	6977												
Location:	Thatcham	1 .											
Contact:	Matthew	Ihomas					Liquids/pr	oducts: V=	40ml vial, G	a=glass bott	le, P=plastic	bottle	
JE JOD NO.:	15/88/1	r	1	r			H=H ₂ SO ₄ , A	Z=ZNAC, N=	NaOH, HN=	HINU ₃			
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24					
Sample ID	WS204	WS209	BH04	WS208	BH02	WS210	BH03	WS203					
Depth											Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containara	VC	VC	VC	NC	NC	NC	NC	VC					
Containers	VG	VG	VG	VG	VG	VG	٧G	VG					
Sample Date	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015					
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water					
Batch Number	1	1	1	1	1	1	1	1					Mathad
Data of Passint	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015	19/06/2015			LOD/LOR	Units	No.
	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015					
TPH CWG													
Aliphatics	-		-	-	_	_	-	-			-		-
>C5-C6 "	<5	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM36/PM12
>C6-C8 *	<5	43	<5	9	35	<5	<5	<5			<5	ug/l	TM36/PM12
>C8-C10"	<5	1186	74	395	175	295	121	63			<5	ug/l	TM36/PM12
>C10-C12"	<5	255	58	206	160	960	38	7			<5	ug/l	TM5/PM30
>C12-C16"	50	670	190	650	420	3040	90	20			<10	ug/l	TM5/PM30
>C16-C21 "	60	420	310	660	340	3130	30	<10			<10	ug/i	
>021-035"	<10	40	<10	70	00	880	<10	<10			<10	ug/i	TIMD/PIVI30
Aromatics	110	2014	632	1990	1180	8305	279	90			<10	ug/i	1 M5/1 M36/PM30
Aromatics	-5	.5	-5	Æ	10	-5	-5	-5			-5		TM26/DM12
>U5-EU7"	<5	<5	<0	<5	-5	<5	<5	<0			<0	ug/i	TM36/PM12
>EC7-EC8	<5	24	<5	<5	<5	<5	<5	<5			<5	ug/l	TM36/PM12
>EC10 EC12#	260	108	485	560	622	701	15	26			<5	ug/l	TM5/PM30
>EC12-EC16#	340	460	490	730	<10	2060	70	90			<10	ug/l	TM5/PM30
>EC16-EC21#	150	320	370	500	<10	2180	<10	50			<10	ug/l	TM5/PM30
>EC21-EC35#	<10	40	40	90	<10	680	<10	<10			<10	ua/l	TM5/PM30
Total aromatics C5-35 [#]	750	1042	1385	1880	632	5711	85	166			<10	ua/l	TM5/PM30
Total aliphatics and aromatics(C5-35) #	860	3656	2017	3870	1812	14016	364	256			<10	ug/l	TM5/TM36/PM30
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM36/PM12
Benzene [#]	<5	<5	<5	<5	10	<5	<5	<5			<5	ug/l	TM36/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM36/PM12
Ethylbenzene #	<5	17	<5	<5	<5	<5	<5	<5			<5	ug/l	TM36/PM12
m/p-Xylene #	<5	7	<5	<5	<5	<5	<5	<5			<5	ug/l	TM36/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM36/PM12

Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Matthew Thomas

Matrix : Liquid

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
15/8871	1	WS204		1-3	Dissolved phase compounds
15/8871	1	WS209		4-6	Kerosene
15/8871	1	BH04		7-9	Dissolved phase compounds
15/8871	1	WS208		10-12	Kerosene
15/8871	1	BH02		13-15	Kerosene
15/8871	1	WS210		16-18	Kerosene & possible diesel
15/8871	1	BH03		19-21	Dissolved phase compounds
15/8871	1	WS203		22-24	Dissolved phase compounds

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8871 6977 **Reference:** JE Sample No.: 3 Location: Thatcham WS204 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8871
Reference:	6977	JE Sample No.:	3
Location:	Thatcham	Sample Identity:	WS204
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environmental Laboratory **Client Name:** OHES JE Job No.: 15/8871 6977 **Reference:** JE Sample No.: 6 Location: Thatcham WS209 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8871 6977 **Reference:** JE Sample No.: 6 Location: Thatcham Sample Identity: WS209 Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environ	nmental Laboratory		
Client Name:	OHES	JE Job No.:	15/8871
Reference:	6977	JE Sample No.:	9
Location:	Thatcham	Sample Identity:	BH04
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8871 6977 **Reference:** JE Sample No.: 9 Location: Thatcham BH04 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

Jones Environmental Laboratory **Client Name:** OHES JE Job No.: 15/8871 6977 12 **Reference:** JE Sample No.: Location: Thatcham WS208 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8871 6977 12 **Reference:** JE Sample No.: Location: Thatcham WS208 Sample Identity: Contact: Matthew Thomas Depth: Matrix: Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8871 6977 15 **Reference:** JE Sample No.: Location: Thatcham BH02 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8871 6977 15 **Reference:** JE Sample No.: Location: Thatcham Sample Identity: BH02 Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8871
Reference:	6977	JE Sample No.:	18
Location:	Thatcham	Sample Identity:	WS210
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8871 6977 18 **Reference:** JE Sample No.: Location: Thatcham WS210 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

Jones Environi	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8871
Reference:	6977	JE Sample No.:	21
Location:	Thatcham	Sample Identity:	BH03
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environi	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8871
Reference:	6977	JE Sample No.:	21
Location:	Thatcham	Sample Identity:	BH03
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8871
Reference:	6977	JE Sample No.:	24
Location:	Thatcham	Sample Identity:	WS203
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8871
Reference:	6977	JE Sample No.:	24
Location:	Thatcham	Sample Identity:	WS203
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Matthew Thomas

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason								
	No deviating sample report results for job 15/8871													

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 15/8871

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

** Iso integrited - otc. B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, result should be considered as indicative only and are not accredited. * AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, result should be considered as indicative only and are not accredited. * Analysis subcontracted to a J	#	ISO17025 (LIKAS) approximated LIK
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Abbestos Detected. NDP No Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. +++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample <	#	
DRDilution required.MMCERTS accredited.NANot applicableNADNo Asbestos Detected.NDPNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNFDClient SampleNFDTrip Blank SampleOCOutside Calibration Range	В	Indicates analyte found in associated method blank.
MMCERTS accredited.NANot applicableNADNo Asbestos Detected.NDDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOCSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectRSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	DR	Dilution required.
NANot applicableNADNo Asbestos Detected.NDDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Samples are dried at 35°C ±5°CCOSuspected carry overLDD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectSFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleNBTrip Blank SampleOCOutside Calibration Range	М	MCERTS accredited.
NADNo Asbestos Detected.NDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTip Blank SampleOCOutside Calibration Range	NA	Not applicable
NDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Result outside calibration range, results should be considered as indicative only and are not accredited.ADCSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNEClient SampleTBTrip Blank SampleOCCOutside Calibration Range	NAD	No Asbestos Detected.
NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	ND	None Detected (usually refers to VOC and/SVOC TICs).
SSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	NDP	No Determination Possible
SVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	SS	Calibrated against a single substance
WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	W	Results expressed on as received basis.
++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	++	Result outside calibration range, results should be considered as indicative only and are not accredited.
ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	*	Analysis subcontracted to a Jones Environmental approved laboratory.
COSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	AD	Samples are dried at 35°C ±5°C
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	CO	Suspected carry over
MEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	ME	Matrix Effect
BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	NFD	No Fibres Detected
LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	BS	AQC Sample
N Client Sample TB Trip Blank Sample OC Outside Calibration Range	LB	Blank Sample
TB Trip Blank Sample OC Outside Calibration Range	N	Client Sample
OC Outside Calibration Range	ТВ	Trip Blank Sample
	OC	Outside Calibration Range

JE Job No: 15/8871

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

Method Code Appendix

OHES

1 The Courtyard

Denmark Street

Wokingham Berkshire RG40 2AZ

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Matthew Thomas
Date :	22nd June, 2015
Your reference :	6977
Our reference :	Test Report 15/8787 Batch 1
Location :	Thatcham
Date samples received :	17th June, 2015
Status :	Final report
Issue :	1

Seven samples were received for analysis on 17th June, 2015 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton BSc Project Manager

Ruielward

Bob Millward BSc FRSC Principal Chemist

Client Name:	OHES						Report :	Liquid					
Reference:	6977												
Location:	Thatcham	ı											
Contact:	Matthew 7	Thomas					Liquids/pr	roducts: V=	40ml vial, G	i=glass bottl	le, P=plastic	bottle	
JE Job No.:	15/8787						$H=H_2SO_4$,	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18							
Sample ID	BH01	BH05	BH06	BH07	BH09	WS212							
Depth											Diagon on	a attached n	ataa far all
COC No / miso											abbrevi	ations and a	cronyms
Containers	V G	V G	V G	V G	V G	V G							
Sample Date	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015							
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1							Method
Date of Receipt	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015					LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
- >C5-C6 [#]	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
>C6-C8 #	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
>C8-C10 [#]	432	<5	19	27	95	10					<5	ua/l	TM36/PM12
>C10-C12 [#]	35	<5	<5	<5	<5	<5					<5	ug/l	TM5/PM30
>C12-C16 [#]	130	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
>C16-C21 #	50	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
>C21-C35#	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
Total aliphatics C5-35 #	647	<10	19	27	95	10					<10	ug/l	TM5/TM36/PM30
Aromatics												-	
>C5-EC7#	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
>EC7-EC8 [#]	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
>EC8-EC10 [#]	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
>EC10-EC12#	35	<5	<5	45	530	95					<5	ug/l	TM5/PM30
>EC12-EC16#	250	<10	<10	130	520	140					<10	ug/l	TM5/PM30
>EC16-EC21 #	130	<10	<10	<10	110	<10					<10	ug/l	TM5/PM30
>EC21-EC35#	<10	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM30
Total aromatics C5-35#	415	<10	<10	175	1160	235					<10	ug/l	TM5/PM30
Total aliphatics and aromatics(C5-35) #	1062	<10	19	202	1255	245					<10	ug/l	TM5/TM36/PM30
MTRF#	~5	<5	~5	~5	~5	<5					~5	ua/l	TM36/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5					<5	ua/l	TM36/PM12
m/p-Xvlene #	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5					<5	ug/l	TM36/PM12
- ,												0	

Jones Environment	al Labo	ratory									
Client Name: Reference:	OHES 6977				Report :	Product					
Location:	I hatcham	homoo				,	40 1 . 1 4				
JE Job No	15/8787	nomas			H=H _s SO ₄	oducts: V⊧ Z=ZnAc N=	=40ml vial, 0 NaOH_HN₌	i=glass boti ₌HN0₀	tle, P=plasti	c bottle	
	10/01/01										
J E Sample No.	19-20										
Sample ID	D										
Depth									Discourse		
COC No / misc									abbrevi	ations and ac	ronyms
Containara	V										
Containers	10/00/0015										
Sample Date	16/06/2015										
Sample Type	Product										
Batch Number	1								LOD/LOR	Units	Method
Date of Receipt	17/06/2015										NO.
Whole Oil Trace	See Attached									None	TM1/PM0
Carbon Range	8-28									None	TM1/PM0
Boiling Point Range	126-432								<50	Degrees C	TM1/PM0
Interpretation	See Attached									None	TM1/PM0
Pristane/Priytane Ratio	1.358									None	TM1/PM0
Are (+ 2veare) (Christensen & Larsen 1993)	<0.1									Veare	TM1/PM0
Age (1 29ears) (Onnsteinsen & Laisen 1995)	>20									Tears	TWITEIWO

Jones Environmental Forensics Ltd

Whole Oil Analysis by GC-FID

No.4225

15/8787-19 Job Number: Client ID: D Description: Burnt Amber Oil on water Carbon Range: nC8 to nC28 Boiling Point Range: 126°C 432°C to Pristane/Phytane Ratio: 1.358 nC17/Pristane Ratio: <0.1 > 20 Years Age(+/-2 years)* Degraded Diesel Interpretation:

Analyst: M. A. Cully BSc MRSC

Date: 16/06/2015

*The age of release estimated in this report is based on the nC17/pristane ratio only as prescribed by Christensen and Larsen (1993) and Kaplan, Galperin, Alimi et al., (1996). Age estimation should be treated with caution as it can be influenced by site specific factors that the laboratory are not aware of. **Bibliography**

Christensen, L. B., and Larsen, T. H. (1993) Method for Determining the Age of Diesel Oil Spills in the Soil.

Groundwater Monitoring Review pp.142 - 149.

Kaplan, I. R., and Galperin, Y. (1996a) How to Recognize a Hydrocarbon Fuel in the Environment and Estimate its Age of Release. In: Bois, T. J., and Luther, B. J. (Ed.)

Groundwater and Soil Contamination: Technical Preparation and Litigation Management. New York, Wiley Law Publishers, pp.145 - 199.
Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Matthew Thomas

Matrix : Liquid

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
15/8787	1	BH01		1-3	Dissolved phase compounds
15/8787	1	BH05		4-6	No interpretation possible
15/8787	1	BH06		7-9	No interpretation possible
15/8787	1	BH07		10-12	Dissolved phase aromatics
15/8787	1	BH09		13-15	Dissolved phase aromatics
15/8787	1	WS212		16-18	Dissolved phase aromatics

EPH Aliphatics Chromatogram

Jones Environ	amental Laboratory		
Client Name:	OHES	JE Job No.:	15/8787
Reference:	6977	JE Sample No.:	3
Location:	Thatcham	Sample Identity:	BH01
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

EPH Aromatics Chromatogram

Jones Environ	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8787
Reference:	6977	JE Sample No.:	3
Location:	Thatcham	Sample Identity:	BH01
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

EPH Aliphatics Chromatogram

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8787 6977 **Reference:** JE Sample No.: 6 Location: Thatcham BH05 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

QF-PM 3.1.12 v1

EPH Aromatics Chromatogram

Jones Environi	mental Laboratory		
Client Name:	OHES	JE Job No.:	15/8787
Reference:	6977	JE Sample No.:	6
Location:	Thatcham	Sample Identity:	BH05
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

EPH Aliphatics Chromatogram

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8787 6977 **Reference:** JE Sample No.: 9 Location: Thatcham BH06 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

EPH Aromatics Chromatogram

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8787 6977 **Reference:** JE Sample No.: 9 Location: Thatcham BH06 Sample Identity: Contact: Matthew Thomas Depth: Matrix: Liquid

EPH Aliphatics Chromatogram

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8787 6977 12 **Reference:** JE Sample No.: Location: Thatcham BH07 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

EPH Aromatics Chromatogram

Jones Enviror	nmental Laboratory		
Client Name:	OHES	JE Job No.:	15/8787
Reference:	6977	JE Sample No.:	12
Location:	Thatcham	Sample Identity:	BH07
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

EPH Aliphatics Chromatogram

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8787 6977 15 **Reference:** JE Sample No.: Location: Thatcham BH09 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

EPH Aromatics Chromatogram

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8787 6977 15 **Reference:** JE Sample No.: Location: Thatcham BH09 Sample Identity: Matthew Thomas Contact: Depth: Matrix: Liquid

EPH Aliphatics Chromatogram

Jones Environmental Laboratory OHES **Client Name:** JE Job No.: 15/8787 6977 18 **Reference:** JE Sample No.: Location: Thatcham WS212 Sample Identity: Matthew Thomas Contact: Depth: Liquid Matrix:

QF-PM 3.1.12 v1

EPH Aromatics Chromatogram

Jones Enviro	nmental Laboratory		
Client Name:	OHES	JE Job No.:	15/8787
Reference:	6977	JE Sample No.:	18
Location:	Thatcham	Sample Identity:	WS212
Contact:	Matthew Thomas	Depth:	
		Matrix:	Liquid

Client Name:OHESReference:6977

Location: Thatcham

Contact: Matthew Thomas

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
15/8787	1					Liquid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Notification of Deviating Samples

Matrix : Liquid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 15/8787

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

** Iso integrited - otc. B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, results should be considered as indicative only and are not accredited. * AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, result should be considered as indicative only and are not accredited. * AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. ++ Result outside calibration range, result should be considered as indicative only and are not accredited. * Analysis subcontracted to a J	#	ISO17025 (LIKAS) approximated LIK
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Abbestos Detected. NDP No Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. +++ Result outside calibration range, results should be considered as indicative only and are not accredited. * Analysis subcontracted to a Jones Environmental approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample <	#	
DRDilution required.MMCERTS accredited.NANot applicableNADNo Asbestos Detected.NDPNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNFDClient SampleNFDTrip Blank SampleOCOutside Calibration Range	В	Indicates analyte found in associated method blank.
MMCERTS accredited.NANot applicableNADNo Asbestos Detected.NDDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOCSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectRSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	DR	Dilution required.
NANot applicableNADNo Asbestos Detected.NDDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Samples are dried at 35°C ±5°CCOSuspected carry overLDD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectSFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleNBTrip Blank SampleOCOutside Calibration Range	М	MCERTS accredited.
NADNo Asbestos Detected.NDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTip Blank SampleOCOutside Calibration Range	NA	Not applicable
NDNone Detected (usually refers to VOC and/SVOC TICs).NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Result outside calibration range, results should be considered as indicative only and are not accredited.ADCSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNEClient SampleTBTrip Blank SampleOCCOutside Calibration Range	NAD	No Asbestos Detected.
NDPNo Determination PossibleSSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.++Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	ND	None Detected (usually refers to VOC and/SVOC TICs).
SSCalibrated against a single substanceSVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	NDP	No Determination Possible
SVSurrogate recovery outside performance criteria. This may be due to a matrix effect.WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	SS	Calibrated against a single substance
WResults expressed on as received basis.+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
+AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	W	Results expressed on as received basis.
++Result outside calibration range, results should be considered as indicative only and are not accredited.*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
*Analysis subcontracted to a Jones Environmental approved laboratory.ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	++	Result outside calibration range, results should be considered as indicative only and are not accredited.
ADSamples are dried at 35°C ±5°CCOSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	*	Analysis subcontracted to a Jones Environmental approved laboratory.
COSuspected carry overLOD/LORLimit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTSMEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	AD	Samples are dried at 35°C ±5°C
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	CO	Suspected carry over
MEMatrix EffectNFDNo Fibres DetectedBSAQC SampleLBBlank SampleNClient SampleTBTrip Blank SampleOCOutside Calibration Range	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	ME	Matrix Effect
BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	NFD	No Fibres Detected
LB Blank Sample N Client Sample TB Trip Blank Sample OC Outside Calibration Range	BS	AQC Sample
N Client Sample TB Trip Blank Sample OC Outside Calibration Range	LB	Blank Sample
TB Trip Blank Sample OC Outside Calibration Range	N	Client Sample
OC Outside Calibration Range	ТВ	Trip Blank Sample
	OC	Outside Calibration Range

Method Code Appendix

JE Job No: 15/8787

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM1	Modified USEPA 8015B method for the determination of carbon banding in oil and product samples by GC-FID.	PM0	No preparation is required.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

OHES

1 The Courtyard

Denmark Street

Wokingham Berkshire RG40 2AZ

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Matthew Thomas
Date :	19th June, 2015
Your reference :	
Our reference :	Test Report 15/8672
Location :	Thatcham
Date samples received :	13th June, 2015
Status :	Final report
Issue :	1

Ten samples were received for analysis on 13th June, 2015 of which ten were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Buday

Belinda Lewsley BA Project Co-ordinator

Rjuielward

Bob Millward BSc FRSC Principal Chemist

Client Name:	OHES						Report :	Solid					
Location:	Thatcham	1 The sum a s					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
Contact: JE Job No.:	Matthew 15/8672	Inomas											
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20			
Sample ID	WS301	WS302	WS303	WS304	WS305	WS306	WS307	WS308	WS309	WS310			
Depth	2.50	2.50	2.00	0.50	1.00	1.90	1.00	0.50	1.00	2.50	Please se	e attached r	otes for all
COC No / misc											abbrevia	ations and a	cronyms
Containers	V J	V J	V J	V J	٧J	٧J	٧J	٧J	٧J	٧J	1		
Sample Date	11/06/2015	11/06/2015	11/06/2015	11/06/2015	11/06/2015	11/06/2015	11/06/2015	12/06/2015	12/06/2015	11/06/2015	1		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	1		
Batch Number	1	1	1	1	1	1	1	1	1	1			Mothod
Date of Receipt	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	LOD/LOR	Units	No.
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Benzene [#]	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Toluene [#]	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3	<3	51	<3	43	<3	<3	<3	<3	ug/kg	TM15/PM10
p/m-Xylene #	<5	<5	<5	12	<5	<5	138	13	<5	<5	<5	ug/kg	TM15/PM10
o-Xylene#	<3	<3	<3	<3	<3	<3	15	<3	<3	<3	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	111	107	91	93	80	74	84	95	85	76	<0	%	TM15/PM10
Surrugate Recovery 4-bromoniuorobenzene	120	99	93	96	74	12	00	96	65	76	<0	70	TIVIT5/FIVIT0
TPH CWG													
Aliphatics													
>C5-C6 #	<0.1	<0.1	<0.1	<0.1	<0.5 _{AA}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	4.1	<0.1	0.4	<0.5 _{AA}	2.5	0.2	0.8	<0.1	1.3	<0.1	mg/kg	TM36/PM12
>C8-C10	0.9	78.9**	1.3	9.4	40.5 _{AA}	55.2**	15.1	5.5	11.0	49.4**	<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	247.2	15.1	152.3	669.0	461.8	605.1	363.3	207.5	142.7	<0.2	mg/kg	TM5/PM16
>C12-C16"	9	610	280	793	1207	980	1363	1574	408	314	<4	mg/kg	TM5/PM16
>C21-C35 [#]	23	157	145	131	257	248	242	935	43	61	<7	ma/ka	TM5/PM16
Total aliphatics C5-35	61	1767	868	1875	4415	2655	3266	5490	888	804	<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics													
>C5-EC7	<0.1	<0.1	<0.1	<0.1	<0.5 _{AA}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8	<0.1	0.1	<0.1	<0.1	<0.5 _{AA}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	1.6	<0.1	0.1	0.9 _{AA}	1.4	0.3	<0.1	0.1	1.2	<0.1	mg/kg	TM36/PM12
>EC10-EC12	<0.2	100.2	<0.2	36.9	250.0	150.6	243.9	40.8	22.7	25.9	<0.2	mg/kg	TM5/PM16
>EC12-EC16	<4	403	50	281	958	583	626	569	129	147	<4	mg/kg	TM5/PM16
>EC16-EC21	<7	458	295	502	987	651	655	1616	137	193	<7	mg/kg	TM5/PM16
>EU21-EU35	</th <th>1035</th> <th>146</th> <th>85 905</th> <th>249</th> <th>146</th> <th>195</th> <th>2884</th> <th>29</th> <th>40</th> <th><19</th> <th>mg/kg</th> <th>TM5/PIVI16</th>	1035	146	85 905	249	146	195	2884	29	40	<19	mg/kg	TM5/PIVI16
Total aliphatics and aromatics(C5-35)	61	2802	1359	2780	6860	4187	4986	8374	1206	1211	<38	mg/kg	TM5/TM36/PM12/PM16
Natural Moisture Content	7.1	14.8	6.9	8.4	23.4	7.1	12.1	19.0	6.0	7.8	<0.1	%	PM4/PM0
	1		1					1		1	1 1		1

Client Name:	OHES
Reference:	
Location:	Thatcham
Contact:	Matthew T

Contact:	Matthew	nomas											
JE Job No.:	15/8672												
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20]		
Sample ID	WS301	WS302	WS303	WS304	WS305	WS306	WS307	WS308	WS309	WS310			
Depth	2.50	2.50	2.00	0.50	1.00	1.90	1.00	0.50	1.00	2.50	Please se	e attached r	notes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJ	VJ	٧J	VJ	Ì								
Sample Date	11/06/2015	11/06/2015	11/06/2015	11/06/2015	11/06/2015	11/06/2015	11/06/2015	12/06/2015	12/06/2015	11/06/2015	Ì		
Sample Type	Soil	Ì											
Batch Number	1	1	1	1	1	1	1	1	1	1		11-25	Method
Date of Receipt	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	13/06/2015	LOD/LOR	Units	No.
VOC MS													
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Chloromethane [#]	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE)#	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
Dichloromethane (DCM) #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	ug/kg	TM15/PM10
trans-1-2-Dichloroethene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1.1-Dichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Bromochloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Chloroform #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1-Dichloropropene#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Benzene [#]	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Trichloroethene (TCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,2-Dichloropropane#	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	ug/kg	TM15/PM10
Toluene [#]	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE) #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,3-Dichloropropane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,2-Dibromoethane#	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/ka	TM15/PM10
Chlorobenzene #	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Ethylbenzene [#]	<3	<3	<3	<3	51	<3	43	<3	<3	<3	<3	ug/kg	TM15/PM10
p/m-Xvlene #	<5	<5	<5	12	<5	<5	138	13	<5	<5	<5	ug/ka	TM15/PM10
o-Xvlene [#]	<3	<3	<3	<3	<3	<3	15	<3	<3	<3	<3	ua/ka	TM15/PM10
Styrene	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/kg	TM15/PM10
Bromoform	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/ka	TM15/PM10
Isopropylbenzene #	<3	246	<3	50	175	307	106	12	<3	15	<3	ua/ka	TM15/PM10
1 1 2 2-Tetrachloroethano [#]	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ua/ka	TM15/PM10

VOC Report :

Solid

<2

<4

253

<3

1185

<3

<5

<6

355

311

<4

<4

<4

<4

<4

<7

<4

1050

<7

80

74

<2

<4

352

<3

<3

<3

<5

2267**

893

<4

25

373

2686**

1677

<4

<7

<4

<27

<7

74

72

<2

<4

228

<3

1015

<3

<5

2874++

226

393

<4

<4

650

<4

<4

<7

<4

2658+

<7

84

80

<2

<4

23

<3

86

<3

<5

314

<4

74

<4

<4

76

<4

<4

<7

<4

120

<7

95

96

<2

<4

<4

<3

<3

<3

<5

12

<4

<4

<4

<4

49

<4

<4

<7

<4

<27

<7

85

85

<2

<4

<4

<3

<3

<3

63

<6

204

<4

5

102

410

397

<4

<7

<4

<27

<7

76

76

<2

<4

<4

<3

<3

<3

<5

<6

<4

<4

<4

<4

<4

<4

<4

<7

<4

<27

<7

<0

<0

ug/kg

%

%

<2

<4

530

<3

<3

<3

85

3014**

528

<4

<4

<4

897

<4

<4

<7

<4

<27

<7

107

99

<2

<4

<4

<3

<3

<3

<5

<6

<4

<4

<4

<4

<4

<4

<4

<7

<4

<27

<7

111

120

<2

<4

<4

<3

<3

<3

<5

<6

<4

<4

<4

<4

20

<4

<4

<7

<4

<27

<7

91

93

<2

<4

117

<3

218

<3

<5

835

<4

77

<4

<4

195

<4

<4

<7

<4

<27

<7

93

96

TM15/PM10

Bromobenzene

Propylbenzene #

2-Chlorotoluene

4-Chlorotoluene

tert-Butylbenzene[#]

sec-Butylbenzene#

4-lsopropyltoluene #

1,3-Dichlorobenzene#

1,4-Dichlorobenzene#

1,2-Dichlorobenzene#

1,2,4-Trichlorobenzene#

1,2,3-Trichlorobenzene#

ogate Recovery 4-Bromoflu

Hexachlorobutadiene

Naphthalene

1,2-Dibromo-3-chloropropane #

Surrogate Recovery Toluene D8

n-Butylbenzene#

1,2,3-Trichloropropane #

1,3,5-Trimethylbenzene#

1,2,4-Trimethylbenzene#

Client Name: OHES

Reference:

Location: Thatcham

Contact: Matthew Thomas

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 15/8672	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 15/8672

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

JE Job No: 15/8672

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID.	PM12/PM16	CWG GC-FID			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes

OHES

1 The Courtyard

Denmark Street

Wokingham Berkshire RG40 2AZ

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Bryan Cherry
Date :	20th August, 2014
Your reference :	6977
Our reference :	Test Report 14/9187 Batch 1
Location :	Thatcham
Date samples received :	14th August, 2014
Status :	Final report
Issue :	1

Thirty seven samples were received for analysis on 14th August, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

6 Jul

Bruce Leslie Project Co-ordinator

Ruiellward

Bob Millward BSc FRSC Principal Chemist

Client Name:	
Reference:	
Location:	
Contact:	
JE Job No.:	

6977 Thatcham Bryan Cherry 14/9187

OHES

Report : Solid

											_		
J E Sample No.	1	2	3-4	5-6	7	8	9-10	11	12	13-14			
Sample ID	WS112	WS112	WS111	WS112	WS111	WS112	WS112	WS210	WS210	WS210			
Depth	3.60-3.70	3.30-3.40	2.90-3.00	2.10-2.20	3.90-4.00	0.90-1.00	1.40-1.50	3.70-3.80	1.90-2.00	1.50-1.60	Please se abbrevi	e attached n	otes for all
COC No / misc											4551011		or or ryrno
Containers	J	J	٧J	٧J	J	J	V J	J	J	V J			
Sample Date	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Mathad
Date of Receipt	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	LOD/LOR	Units	No.
EPH (C8-C40)#	<30	<30	<30	-	<30	<30	-	<30	-	-	<30	ma/ka	TM5/PM8
EPH > C8-C10#	-	-	-	~5	-	-	21	-	34	275	<5	mg/kg	TM5/PM8
EPH - 010 010 [#]				<10			33		46	324	<10	mg/kg	TM5/PM8
EPH > 010-012			_	56	_	_	104	_	105	701	<10	mg/kg	
	-	-	-	00	-	-	104	-	110	731	10	mg/kg	
	-	-	-	09	-	-	100	-	113	001	<10	mg/kg	
EPH >G21-G40	-	-	-	61	-	-	117	-	83	391	<10	mg/kg	
EPH >C8-C40	-	-	-	206	-	-	383	-	401	2498	<30	mg/kg	1105/P108
TPH CWG													
Alinhatics													
- CE CE #			_	_	_			_	_		<0.1	ma/ka	TM36/PM12
>03-08			_	_	_	_	_	_	-	_	<0.1	mg/kg	TM26/DM12
>08-08	-	-	-	-	-	-	-	-	-	-	-0.1	mg/kg	TM26/DM12
>00-010	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	
>C10-C12"	-	-	-	-	-	-	-	-	-	-	<0.2	mg/kg	TM5/PM16
>C12-C16"	-	-	-	-	-	-	-	-	-	-	<4	mg/kg	TM5/PM16
>C16-C21 "	-	-	-	-	-	-	-	-	-	-	</td <td>mg/kg</td> <td>TM5/PM16</td>	mg/kg	TM5/PM16
>C21-C35*	-	-	-	-	-	-	-	-	-	-	<7	mg/kg	TM5/PM16
Total aliphatics C5-35	-	-	-	-	-	-	-	-	-	-	<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics													
>C5-EC7	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12	-	-	-	-	-	-	-	-	-	-	<0.2	mg/kg	TM5/PM16
>EC12-EC16	-	-	-	-	-	-	-	-	-	-	<4	mg/kg	TM5/PM16
>EC16-EC21	-	-	-	-	-	-	-	-	-	-	<7	mg/kg	TM5/PM16
>EC21-EC35	-	-	-	-	-	-	-	-	-	-	<7	mg/kg	TM5/PM16
Total aromatics C5-35	-	-	-	-	-	-	-	-	-	-	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-	-	-	-	-	-	-	-	<38	mg/kg	TM5/TM36/PM12/PM16
MTBE#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
Benzene #	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
Toluene #	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
Ethylbenzene #	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
m/p-Xylene #	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
o-Xylene [#]	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
Natural Moisture Content	17.0	27.3	19.8	11.7	15.9	9.0	11.4	19.8	36.2	26.6	<0.1	%	PM4/PM0

Client Name:							
Reference:							
Location:							
Contact:							
JE Job No.:							

6977 Thatcham Bryan Cherry

OHES

14/9187

Report : Solid

J E Sample No.	15	16-17	18	19-20	21	22-23	24-25	26	27	28			
Sample ID	WS111	WS112	WS210	WS210	WS210	WS210	WS210	WS209	WS209	WS209			
Denth	3 20-3 30	2 50-2 60	0 80-0 90	1 20-1 30	3 30-3 40	2 40-2 50	2 60-2 70	1 90-2 00	2 90-3 00	0 30-0 40			
	0.20 0.00	2.00 2.00	0.00 0.00	1.20 1.00	0.00 0.40	2.40 2.00	2.00 2.70	1.00 2.00	2.00 0.00	0.00 0.40	Please see attached notes for abbreviations and acronyms		
COC NO / MISC													
Containers	J	V J	J	٧J	J	٧J	٧J	J	J	J			
Sample Date	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	LOD/LOR	Units	No.
EPH (C8-C40) #	<30	<30	112	-	<30	-	-	60	<30	<30	<30	ma/ka	TM5/PM8
EPH >C8-C10 [#]	-	-	-	2095**	-	-	213	-	-	-	<5	mg/kg	TM5/PM8
EPH >C10-C12#	-	-	-	2616++	-	-	379	-	-	-	<10	mg/kg	TM5/PM8
EPH >C12-C16#	-	-	-	6500**	-	-	1032	-	-	-	<10	mg/kg	TM5/PM8
EPH >C16-C21 #	-	-	-	5775**	-	-	1019	-	-	-	<10	mg/kg	TM5/PM8
EPH >C21-C40	-	-	-	3762**	-	-	264	-	-	-	<10	mg/kg	TM5/PM8
EPH >C8-C40	-	-	-	20748**	-	-	2907	-	-	-	<30	mg/kg	TM5/PM8
TPH CWG													
Aliphatics													
>C5-C6 [#]	-	-	-	-	-	0.1	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	-	-	-	-	-	6.9	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C8-C10	-	-	-	-	-	81.3**	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C10-C12#	-	-	-	-	-	597.6	-	-	-	-	<0.2	mg/kg	TM5/PM16
>C12-C16 [#]	-	-	-	-	-	1493	-	-	-	-	<4	mg/kg	TM5/PM16
>C16-C21 "	-	-	-	-	-	1437	-	-	-	-	</th <th>mg/kg</th> <th>TM5/PM16</th>	mg/kg	TM5/PM16
>U21-U35 " Total alighation C5 25	-	-	-	-	-	4006	-	-	-	-	<10	mg/kg	
Aromatics	-	-	-	-	-	4000	-	-	-	-	<15	ilig/kg	
>C5-EC7	-	-	-	-	-	<0.1	-	-	-	-	<0.1	ma/ka	TM36/PM12
>EC7-EC8	-	-	-	-	-	0.2	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	-	-	-	-	3.5	-	-	-	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12	-	-	-	-	-	247.0	-	-	-	-	<0.2	mg/kg	TM5/PM16
>EC12-EC16	-	-	-	-	-	866	-	-	-	-	<4	mg/kg	TM5/PM16
>EC16-EC21	-	-	-	-	-	947	-	-	-	-	<7	mg/kg	TM5/PM16
>EC21-EC35	-	-	-	-	-	199	-	-	-	-	<7	mg/kg	TM5/PM16
Total aromatics C5-35	-	-	-	-	-	2263	-	-	-	-	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-	-	-	6329	-	-	-	-	<38	mg/kg	TM5/TM36/PM12/PM16
MTBE#	-	-	-	-	-	<5	-	-	-	-	<5	ug/kg	TM31/PM12
Benzene [#]	-	-	-	-	-	63	-	-	-	-	<5	ug/kg	TM31/PM12
Toluene [#]	-	-	-	-	-	232	-	-	-	-	<5	ug/kg	TM31/PM12
Ethylbenzene #	-	-	-	-	-	332	-	-	-	-	<5	ug/kg	TM31/PM12
m/p-Xylene #	-	-	-	-	-	2332	-	-	-	-	<5	ug/kg	TM31/PM12
o-Xylene *	-	-	-	-	-	812	-	-	-	-	<5	ug/kg	TM31/PM12
Natural Mojeture Content	22.0	18.6	20.7	20.4	20.0	8 0	96	22.1	21.1	9.2	-0.1	0/	
Natural Moisture Content	22.0	10.0	23.1	23.4	20.0	0.0	5.0	20.1	21.1	5.2	<0.1	/0	

Client Name:
Reference:
Location:
Contact:
JE Job No.:

6977 Thatcham Bryan Cherry 14/9187

OHES

Report : Solid

J E Sample No.	29	30-31	32-33	34	35	36-37	38-39	40	41	42-43			
Sample ID	WS211	WS209	WS209	WS209	WS209	WS208	WS207	WS207	WS208	WS208			
Depth	3.50-3.60	2.40-2.50	2.60-2.70	0.90-1.00	0.40-0.50	1.40-1.50	2.90-3.00	3.50-3.60	3.60-3.70	2.50-2.60	Please se	e attached n	otes for all
COC No / misc											abbrevi	alions and a	cromyrns
Containers	J	V J	٧J	J	J	V J	٧J	J	J	٧J			
Sample Date	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Mathod
Date of Receipt	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	LOD/LOR	Units	No.
EPH (C8-C40) [#]	<30	-	<30	<30	149	-	-	<30	<30	-	<30	ma/ka	TM5/PM8
EPH >C8-C10 [#]	-	1140	-	-	-	301	<5	-	-	-	<5	mg/kg	TM5/PM8
EPH >C10-C12#	-	1119	-	-	-	920	19	-	-	-	<10	mg/kg	TM5/PM8
EPH >C12-C16#	-	2297	-	-	-	3741	54	-	-	-	<10	mg/kg	TM5/PM8
EPH >C16-C21 #	-	1616	-	-	-	4677	61	-	-	-	<10	mg/kg	TM5/PM8
EPH >C21-C40	-	724	-	-	-	890	26	-	-	-	<10	mg/kg	TM5/PM8
EPH >C8-C40	-	6896	-	-	-	10529	160	-	-	-	<30	mg/kg	TM5/PM8
TPH CWG													
Aliphatics													
>C5-C6 #	-	-	-	-	-	-	-	-	-	0.2	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	-	-	-	-	-	-	-	-	-	5.6	<0.1	mg/kg	TM36/PM12
>C8-C10	-	-	-	-	-	-	-	-	-	67.2**	<0.1	mg/kg	TM36/PM12
>C10-C12#	-	-	-	-	-	-	-	-	-	518.0	<0.2	mg/kg	TM5/PM16
>C12-C16*	-	-	-	-	-	-	-	-	-	1171	<4	mg/kg	TM5/PM16
>C16-C21 "	-	-	-	-	-	-	-	-	-	1033	</td <td>mg/kg</td> <td>TM5/PM16</td>	mg/kg	TM5/PM16
>C21-C35" Tetal elizabetica OS 05	-	-	-	-	-	-	-	-	-	237	</td <td>mg/kg</td> <td>TM5/PM16</td>	mg/kg	TM5/PM16
	-	-	-	-	-	-	-	-	-	3032	<19	ilig/kg	
>C5-EC7	-	-	-	-	-	-	-	-	-	<0.1	<0.1	ma/ka	TM36/PM12
>EC7-EC8	-	-	-	-	-	-	-	-	-	0.2	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	-	-	-	-	-	-	-	-	2.6	<0.1	mg/kg	TM36/PM12
>EC10-EC12	-	-	-	-	-	-	-	-	-	165.6	<0.2	mg/kg	TM5/PM16
>EC12-EC16	-	-	-	-	-	-	-	-	-	561	<4	mg/kg	TM5/PM16
>EC16-EC21	-	-	-	-	-	-	-	-	-	604	<7	mg/kg	TM5/PM16
>EC21-EC35	-	-	-	-	-	-	-	-	-	114	<7	mg/kg	TM5/PM16
Total aromatics C5-35	-	-	-	-	-	-	-	-	-	1447	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-	-	-	-	-	-	-	4479	<38	mg/kg	TM5/TM36/PM12/PM16
MTBE#	-	-	-	-	-	-	-	-	-	<5	<5	ug/kg	TM31/PM12
Benzene #	-	-	-	-	-	-	-	-	-	52	<5	ug/kg	TM31/PM12
Toluene #	-	-	-	-	-	-	-	-	-	259	<5	ug/kg	TM31/PM12
Ethylbenzene #	-	-	-	-	-	-	-	-	-	212	<5	ug/kg	TM31/PM12
m/p-Xylene "	-	-	-	-	-	-	-	-	-	1640	<5	ug/kg	TM31/PM12
o-Xylene "	-	-	-	-	-	-	-	-	-	736	<5	ug/kg	TM31/PM12
Natural Moisture Content	22.4	13.1	19.8	9.5	13.5	16.1	23.8	20.2	21.4	7.8	<0.1	%	PM4/PM0
			-		-		-						

Client Name:
Reference:
Location:
Contact:
JE Job No.:

6977 Thatcham Bryan Cherry 14/9187

OHES

Report : Solid

LE Comple No	44.45	46.47	49.40	50	E1	50 50	E4		1		
o E Sample No.	44-43	40-47	40-45	50	51	32-33	54				
Sample ID	WS208	WS208	WS207	WS209	WS207	WS207	WS207				
Depth	1 90-2 00	2 90-3 00	1 90-2 00	3 50-3 60	0 50-0 60	2 40-2 50	0.90-1.00				
Deptil	1.30-2.00	2.30-3.00	1.50-2.00	0.00-0.00	0.30-0.00	2.40-2.30	0.30-1.00		Please se abbrevi	e attached n ations and a	otes for all cronyms
COC No / misc											
Containers	٧J	٧J	٧J	J	J	٧J	J				
Sample Date	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014				
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1				Method
Date of Receipt	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014	14/08/2014		LOD/LOR	Units	No.
EPH (C8-C40)#	-	-	1048	<30	<30	-	71		<30	mg/kg	TM5/PM8
EPH >C8-C10 [#]	-	101	-	-	-	-	-		<5	mg/kg	TM5/PM8
EPH >C10-C12 [#]	-	174	-	-	-	-	-		<10	mg/kg	TM5/PM8
EPH >C12-C16#	-	431	-	-	-	-	-		<10	mg/kg	TM5/PM8
EPH >C16-C21 #	-	384	-	-	-	-	-		<10	mg/kg	TM5/PM8
EPH >C21-C40	-	56	-	-	-	-	-		<10	mg/kg	TM5/PM8
EPH >C8-C40	-	1146	-	-	-	-	-		<30	mg/kg	TM5/PM8
TPH CWG											
Aliphatics											
>C5-C6#	<0.1	-	-	-	-	<0.1	-		<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	4.6	-	-	-	-	0.2	-		<0.1	mg/kg	TM36/PM12
>C8-C10	59.8**	-	-	-	-	23.4**	-		<0.1	mg/kg	TM36/PM12
>C10-C12#	1012.1	-	-	-	-	363.8	-		<0.2	mg/kg	TM5/PM16
>C12-C16 [#]	2589	-	-	-	-	870	-		<4	mg/kg	TM5/PM16
>C16-C21 #	2481	-	-	-	-	803	-		<7	mg/kg	TM5/PM16
>C21-C35#	419	-	-	-	-	361	-		<7	mg/kg	TM5/PM16
Total aliphatics C5-35	6566	-	-	-	-	2421	-		<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics											
>C5-EC7	<0.1	-	-	-	-	<0.1	-		<0.1	mg/kg	TM36/PM12
>EC7-EC8	0.2	-	-	-	-	<0.1	-		<0.1	mg/kg	TM36/PM12
>EC8-EC10#	2.4	-	-	-	-	0.7	-		<0.1	mg/kg	TM36/PM12
>EC10-EC12	340.7	-	-	-	-	81.5	-		<0.2	mg/kg	TM5/PM16
>EC12-EC16	1255	-	-	-	-	352	-		<4	mg/kg	TM5/PM16
>EC16-EC21	1544	-	-	-	-	452	-		<7	mg/kg	TM5/PM16
>EC21-EC35	310	-	-	-	-	170	-		<7	mg/kg	TM5/PM16
Total aromatics C5-35	3452	-	-	-	-	1056	-		<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	10018	-	-	-	-	3477	-		<38	mg/kg	TM5/TM36/PM12/PM16
MTDE#	-					-			-		TMOTIONIC
NIBE"	<5	-	-	-	-	<5	-		<5	ug/kg	TM21/DM12
Denzene	43	-	-	-	-	<0	-		<5 E	ug/kg	TM31/PM12
Toluene "	234	-	-	-	-	10	-		<0	ug/kg	TM31/PM12
Ethylbenzene	1620	-	-	-	-	267	-		<5	ug/kg	TM31/PM12
o Xulono#	680					229			<5	ug/kg	TM31/PM12
0-Xylerie	000	-	-	-	-	225	-		<5	ug/kg	
Natural Moisture Content	11.1	24.6	13.0	20.0	12.6	13.4	15.7		<0.1	%	PM4/PM0
		24.0	10.0	20.0	12.0	10.4	10.7		<0.1	70	

Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Bryan Cherry

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
14/9187	1	WS112	2.10-2.20	5-6	Possible degraded diesel
14/9187	1	WS112	1.40-1.50	9-10	Possible degraded diesel
14/9187	1	WS210	1.90-2.00	12	Possible degraded diesel
14/9187	1	WS210	1.50-1.60	13-14	Kerosene, Possible degraded diesel & Possible lubricating oil
14/9187	1	WS210	1.20-1.30	19-20	Kerosene, Possible degraded diesel & Possible lubricating oil
14/9187	1	WS210	2.60-2.70	24-25	Kerosene & Possible degraded diesel
14/9187	1	WS209	2.40-2.50	30-31	Kerosene & Possible degraded diesel
14/9187	1	WS208	1.40-1.50	36-37	Kerosene & Possible degraded diesel
14/9187	1	WS207	2.90-3.00	38-39	Possible degraded diesel
14/9187	1	WS208	2.90-3.00	46-47	Degraded kerosene & Possible degraded diesel

EPH Interpretation Report

Matrix : Solid

Client Name:OHESReference:6977Location:ThatchamContact:Bryan Cherry

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 14/9187	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/9187

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
OC	Outside Calibration Range

JE Job No: 14/9187

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation	Yes		AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM5/TM36	TPH CWG by GC-FID	PM12/PM16	CWG GC-FID			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes

OHES

1 The Courtyard

Denmark Street

Wokingham Berkshire RG40 2AZ

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Bryan Cherry
Date :	11th August, 2014
Your reference :	6977
Our reference :	Test Report 14/8799 Batch 1
Location :	Thatcham
Date samples received :	2nd August, 2014
Status :	Final report
Issue :	1

Thirty samples were received for analysis on 2nd August, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

6 Jul

Bruce Leslie Project Co-ordinator

Ruiellward

Bob Millward BSc FRSC Principal Chemist

Client Name:
Reference:
Location:
Contact:
JE Job No.:

6977 Thatcham Bryan Cherry 14/8799

OHES

Report : Solid

J E Sample No.	1-2	3-4	5	6	7-8	9-10	11	13-14	15-16	20			
Sample ID	WS201	WS201	WS201	WS201	WS202	WS202	WS202	WS203	WS203	WS203			
Depth	0.9	1.5-1.6	2.3-2.4	3.6-3.7	1.3	2.3-2.4	2.9-3.0	0.5-0.6	1.4-1.5	3.7-3.8	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	٧J	V J	J	J	V J	V J	J	٧J	٧J	J			
Sample Date	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014			
Sample Type	Soil												
Batah Numbar	1	1	1	4	4	4	4	-	-				
Batch Number	1	1	1	1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014			
EPH (C8-C40)"	-	-	-	77	-	-	-	-	-	58	<30	mg/kg	TM5/PM8
EPH >C8-C10"	<5	-	<5	-	-	<5	-	-	-	-	<5	mg/kg	TM5/PM8
EPH >C10-C12"	<10	-	<10	-	-	<10	-	-	-	-	<10	mg/kg	
EPH >012-016"	37	-	<10	-	-	<10	-	-	-	-	<10	mg/kg	
EPH >C16-C21*	51	-	<10	-	-	<10	-	-	-	-	<10	mg/kg	
EPH >G21-G35"	1/	-	67	-	-	28	-	-	-	-	<10	mg/kg	
EPH >C8-C35 "	105	-	67	-	-	<30	-	-	-	-	<30	тід/кд	11015/191018
TPH CWG													
Aliphatics													
>C5-C6 [#]	-	<0.1	-	-	<0.1	-	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	-	4.0	-	-	3.9	-	-	7.1	6.9	-	<0.1	mg/kg	TM36/PM12
>C8-C10	-	91.1	-	-	55.3**	-	-	107.8**	89.4**	-	<0.1	mg/kg	TM36/PM12
>C10-C12#	-	305.8	-	-	570.8	-	-	673.1	1054.7	-	<0.2	mg/kg	TM5/PM16
>C12-C16 [#]	-	580	-	-	1376	-	-	1578	2422	-	<4	mg/kg	TM5/PM16
>C16-C21 #	-	473	-	-	1402	-	-	1616	2280	-	<7	mg/kg	TM5/PM16
>C21-C35#	-	109	-	-	491	-	-	723	943	-	<7	mg/kg	TM5/PM16
Total aliphatics C5-35	-	1563	-	-	3899	-	-	4705	6796	-	<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics													
>C5-EC7	-	<0.1	-	-	<0.1	-	-	<0.1	<0.1	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8	-	<0.1	-	-	<0.1	-	-	<0.1	1.5	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	12.6	-	-	7.9	-	-	21.7	11.6	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12	-	128.7	-	-	241.6	-	-	226.1	346.3	-	<0.2	mg/kg	TM5/PM16
>EC12-EC16	-	294	-	-	834	-	-	769	1225	-	<4	mg/kg	TM5/PM16
>EC16-EC21	-	259	-	-	1020	-	-	918	1341	-	<7	mg/kg	TM5/PM16
>EC21-EC35	-	45	-	-	317	-	-	354	472	-	<7	mg/kg	TM5/PM16
Total aromatics C5-35	-	739	-	-	2421	-	-	2289	3397	-	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	2302	-	-	6320	-	-	6994	10193	-	<38	mg/kg	TM5/TM36/PM12/PM16
MTBE#	-	<5	-	-	<5	-	-	<5	<5	-	<5	ug/kg	TM31/PM12
Benzene [#]	-	<5	-	-	<5	-	-	<5	<5	-	<5	ug/kg	TM31/PM12
Toluene #	-	<5	-	-	<5	-	-	<5	1485	-	<5	ug/kg	TM31/PM12
Ethylbenzene #	-	1767	-	-	895	-	-	615	<5	-	<5	ug/kg	TM31/PM12
m/p-Xylene #	-	5375	-	-	4595	-	-	13877	8131	-	<5	ug/kg	TM31/PM12
o-Xylene #	-	5472	-	-	2375	-	-	7142	3508	-	<5	ug/kg	TM31/PM12
Natural Moisture Content	14.4	9.4	59.7	20.0	9.7	53.6	-	16.0	14.9	15.8	<0.1	%	PM4/PM0
Overenia Metter				0.0			0.0					¢,	TMO1/DMC1
Organic Matter	-	-	-	0.3	-	-	0.6	-	-	-	<0.2	%	1 MZ 1/PM24
	1			1	1	1	1	1					
Client Name:													

Reference:													
Location:													
Contact:													
JE Job No.:													

6977 Thatcham Bryan Cherry 14/8799

OHES

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

											Ì		
J E Sample No.	22-23	24-25	26	27	30-31	32-33	35	36	37	41-42			
Sample ID	WS204	WS204	WS204	WS205	WS205	WS205	WS205	WS205	WS206	WS206			
Depth	1.9-2.0	2.7-2.8	3.4	0.4-0.5	1.9-2.0	2.2-2.3	2.9-3.0	3.3-3.4	0.7-0.8	2.4-2.5	Dia		
000 No. (miles		-	-			-					Please se abbrevi	e attached n ations and a	otes for all cronyms
COC NO / MISC													
Containers	٧J	٧J	J	J	٧J	٧J	J	J	J	VJ			
Sample Date	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	LOD/LOR	Units	No.
EPH (C8-C40) [#]	-	11191	<30	-	-	-	<30	-	-	-	<30	mg/kg	TM5/PM8
EPH >C8-C10 [#]	-	589 	-	<5	358	-	-	-	<5	-	<5	mg/kg	TM5/PM8
EPH >C10-C12 [#]	-	912 4	-	<10	1122	-	-	-	<10	-	<10	mg/kg	TM5/PM8
EPH >C12-C16#	-	2069	-	<10	3309	-	-	-	<10	-	<10	mg/kg	TM5/PM8
EPH >C16-C21 #	-	2014	-	<10	3509	-	-	-	<10	-	<10	mg/kg	TM5/PM8
EPH >C21-C35#	-	4045	-	<10	829	-	-	-	15	-	<10	ma/ka	TM5/PM8
EPH >C8-C35#	-	9629	-	<30	9127	-	-	-	<30	-	<30	ma/ka	TM5/PM8
												0.0	
TPH CWG													
Aliphatics													
>C5-C6 #	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	0.6	-	-	-	-	2.0	-	-	-	9.4	<0.1	mg/kg	TM36/PM12
>C8-C10	36.2**	-	-	-	-	41 7**	-	-	-	74.3**	<0.1	mg/kg	TM36/PM12
>C10-C12 [#]	257.2	-	-	-	-	562.5	-	-	-	363.4	<0.2	mg/kg	TM5/PM16
>C12-C16 [#]	672	-	-	-	-	1284	-	-	-	810	<4	ma/ka	TM5/PM16
>C16-C21 #	667	-	-	-	-	1179	-	-	-	725	<7	ma/ka	TM5/PM16
>C21-C35#	144	-	-	-	-	248	-	-	-	201	<7	ma/ka	TM5/PM16
Total aliphatics C5-35	1777	-	-	-	-	3317	-	-	-	2183	<19	ma/ka	TM5/TM36/PM12/PM16
Aromatics												3.3	
>C5-EC7	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	<0.1	ma/ka	TM36/PM12
>EC7-EC8	<0.1	-	-	-	-	<0.1	-	-	-	0.3	<0.1	ma/ka	TM36/PM12
>EC8-EC10#	4.6	-	-	-	-	4.9	-	-	-	6.7	<0.1	ma/ka	TM36/PM12
>EC10-EC12	100.6	-	-	-	-	135.8	-	-	-	183.9	<0.2	ma/ka	TM5/PM16
>EC12-EC16	382	-	-	-	-	474	-	-	-	594	<4	ma/ka	TM5/PM16
>EC16-EC21	450	-	-	-	-	559	-	-	-	603	<7	ma/ka	TM5/PM16
>EC21-EC35	108	-	-	-	-	120	-	-	-	153	<7	ma/ka	TM5/PM16
Total aromatics C5-35	1045	-	-	-	-	1294	-	-	-	1541	<19	ma/ka	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	2822	-	-	-	-	4611	-	-	-	3724	<38	ma/ka	TM5/TM36/PM12/PM16
	-					-				-		3 3	
MTBE [#]	<5	-	-	-	-	<5	-	-	-	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5	-	-	-	-	<5	-	-	-	<5	<5	ua/ka	TM31/PM12
Toluene [#]	<5	-	-	-	-	<5	-	-	-	372	<5	ua/ka	TM31/PM12
Ethylbenzene [#]	1110	-	-	-	-	205	-	-	-	610	<5	ua/ka	TM31/PM12
m/p-Xvlene #	1244	-	-	-	-	1739	-	-	-	2987	<5	ua/ka	TM31/PM12
o-Xvlene#	2314	-	-	-	-	3032	-	-	-	3050	<5	ua/ka	TM31/PM12
o Aylone	2011					0002				0000	10	aging	
Natural Moisture Content	22.2	20.7	17.9	9.3	9.9	9.8	19.0	-	23.4	7.8	<0.1	%	PM4/PM0
Organic Matter	-	-	-	0.3	-	-	-	<0.2	0.3	-	<0.2	%	TM21/PM24
- game manor				0.0				-0.2	0.0		-9.2	,0	

Client Name: Reference: Location: Contact: JE Job No.:

6977 Thatcham Bryan Cherry 14/8799

OHES

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

						_					
J E Sample No.	45										
Sample ID	WS206										
Depth	3.9-4.0					Please see attached notes for a					
COC No / misc						abbrevi	abbreviations and acronyms				
Containers	J										
Sample Date	31/07/2014										
Sample Type	Soil										
Sample Type	3011										
Batch Number	1					LOD/LOR	Units	Method			
Date of Receipt	02/08/2014							140.			
EPH (C8-C40) #	47					<30	mg/kg	TM5/PM8			
EPH >C8-C10*	-					<5	mg/kg	TM5/PM8			
EPH >C10-C12"	-					<10	mg/kg	TM5/PM8			
EPH >C12-C16"	-					<10	mg/kg				
EPH >C16-C21"	-					<10	mg/kg				
EPH >C21-C35"	-					<10	mg/kg	TM5/PM8			
EFH >00-035	-					<00	iiig/kg	1100/1100			
TPH CWG											
Aliphatics											
>C5-C6#	-					<0.1	mg/kg	TM36/PM12			
>C6-C8 #	-					<0.1	mg/kg	TM36/PM12			
>C8-C10	-					<0.1	mg/kg	TM36/PM12			
>C10-C12#	-					<0.2	mg/kg	TM5/PM16			
>C12-C16#	-					<4	mg/kg	TM5/PM16			
>C16-C21 #	-					<7	mg/kg	TM5/PM16			
>C21-C35#	-					<7	mg/kg	TM5/PM16			
Total aliphatics C5-35	-					<19	mg/kg	TM5/TM36/PM12/PM16			
Aromatics											
>C5-EC7	-					<0.1	mg/kg	TM36/PM12			
>EC7-EC8	-					<0.1	mg/kg	TM36/PM12			
>EC8-EC10"	-					<0.1	mg/kg	TM5/PM12			
>EC10-EC12	-					<0.2	mg/kg	TM5/PM16			
>EC16-EC21	_					<7	ma/ka	TM5/PM16			
>EC21-EC35	-					<7	ma/ka	TM5/PM16			
Total aromatics C5-35	-					<19	ma/ka	TM5/TM36/PM12/PM16			
Total aliphatics and aromatics(C5-35)	-					<38	mg/kg	TM5/TM36/PM12/PM16			
MTBE#	-					<5	ug/kg	TM31/PM12			
Benzene [#]	-					<5	ug/kg	TM31/PM12			
Toluene #	-					<5	ug/kg	TM31/PM12			
Ethylbenzene #	-					<5	ug/kg	TM31/PM12			
m/p-Xylene [#]	-					<5	ug/kg	TM31/PM12			
o-Xylene #	-					<5	ug/kg	TM31/PM12			
Natural Moisture Content	24.1					<0.1	%	PM4/PM0			
Organic Matter						-0.2	0/	TM21/PM24			
Sigario Maller	-					<0.Z	/0	11112 1/1-11124			

Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Bryan Cherry
IF Job No.	14/9700

SVOC Report : Solid

JE JOD NO.:	14/0/99										
J E Sample No.	3-4	7-8	13-14	15-16	22-23	32-33	41-42				
Sample ID	WS201	WS202	WS203	WS203	WS204	WS205	WS206				
Depth	1.5-1.6	1.3	0.5-0.6	1.4-1.5	1.9-2.0	2.2-2.3	2.4-2.5		Please se	e attached n	otes for all
COC No / misc									abbrevia	ations and a	cronyms
Containers	V J	VJ	VJ	VJ	٧J	VJ	VJ				
Sample Date	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014				
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1			Linite	Method
Date of Receipt	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014		LOD/LOR	Units	No.
SVOC MS											
Phenols											
2-Chlorophenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2,4-Dichlorophenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Phenol	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
PAHs	10		10	10	10	10	10		10		T1 44 0 / D1 40
2-Chloronaphthalene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2-wethylnaphthalene	10257	10272	17067	38556	<10	-10	13415		<10	ug/kg	TM16/PIVI8
	<10	1/22	2469	<10	<10	<10	152		<10	ug/kg	TM16/PM8
	<10	1433	2400	1414	599	551	2022		<10	ug/kg	TM16/PM9
Fluorene	1/103	5/30	8767	4899	2175	1517	4788		<10	ug/kg	TM16/PM8
Phenanthrene	1537	9712	14723	8460	4670	2809	9735		<10	ug/kg	TM16/PM8
Anthracene	<10	<10	<10	<10	<10	<10	252		<10	ug/kg	TM16/PM8
Fluoranthene	46	403	662	182	<10	<10	519		<10	ug/kg	TM16/PM8
Pyrene	133	1563	2204	1123	538	330	1434		<10	ug/ka	TM16/PM8
Benzo(a)anthracene	<10	31	<10	<10	<10	<10	86		<10	ua/ka	TM16/PM8
Chrysene	<10	247	441	203	62	55	277		<10	ug/kg	TM16/PM8
Benzo(bk)fluoranthene	<10	20	63	<10	17	35	68		<10	ug/kg	TM16/PM8
Benzo(a)pyrene	<10	<10	17	<10	<10	11	<10		<10	ug/kg	TM16/PM8
Indeno(123cd)pyrene	<10	<10	<10	<10	<10	15	<10		<10	ug/kg	TM16/PM8
Dibenzo(ah)anthracene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Benzo(ghi)perylene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Phthalates											
Bis(2-ethylhexyl) phthalate	53	2716	6815	1589	513	367	<10		<10	ug/kg	TM16/PM8
Butylbenzyl phthalate	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Di-n-butyl phthalate	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Diethyl phthalate	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Dimethyl phthalate	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8

Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Bryan Cherry
IT Job No.	14/0700

SVOC Report : Solid

JE JOD NO.:	14/0/99										
J E Sample No.	3-4	7-8	13-14	15-16	22-23	32-33	41-42				
Sample ID	WS201	WS202	WS203	WS203	WS204	WS205	WS206				
Depth	1.5-1.6	1.3	0.5-0.6	1.4-1.5	1.9-2.0	2.2-2.3	2.4-2.5		Please se	e attached n	otes for all
COC No / misc									 abbrevia	ations and ac	cronyms
Containers	V J	V J	V J	V J	V J	V J	V J				
Sample Date	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014	31/07/2014				
Sample Type Batch Number	5011	5011	5011	501	501	5011	5011		 		Method
Date of Receipt	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014	02/08/2014		LOD/LOR	Units	No.
SVOC MS	02/00/2011	02,00,2011	02,00,2011	02/00/2011	02,00,2011	02/00/2011	02,00,2011				
Other SVOCs											
1,2-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2-Nitroaniline	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
2,6-Dinitrololuene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
J-Ricioaniine	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
4-Chlorophenvlphenvlether	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Carbazole	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Dibenzofuran	<10	1526	<10	1612	494	384	1338		<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Hexachlorobutadiene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Isophorone	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
Nitrobenzene	<10	<10	<10	<10	<10	<10	<10		<10	ug/kg	TM16/PM8
				-							

Client Name:	OHES
Reference:	6977
Location:	Thatcham
Contact:	Bryan Cherry

EPH Interpretation Report

Matrix : Solid

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
14/8799	1	WS201	0.9	1-2	Possible degraded kerosene
14/8799	1	WS201	2.3-2.4	5	Possible lubricating oil
14/8799	1	WS202	2.3-2.4	9-10	No interpretation possible
14/8799	1	WS204	2.7-2.8	24-25	Kerosene & Possible tarmac/bitumen
14/8799	1	WS205	0.4-0.5	27	No interpretation possible
14/8799	1	WS205	1.9-2.0	30-31	Kerosene
14/8799	1	WS206	0.7-0.8	37	No interpretation possible

Client Name:OHESReference:6977Location:ThatchamContact:Bryan Cherry

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 14/8799	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/8799

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
OC	Outside Calibration Range
A	x5 Dilution

JE Job No: 14/8799

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation	Yes		AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM5/TM36	TPH CWG by GC-FID	PM12/PM16	CWG GC-FID			AR	Yes
TM16	In-House method based on USEPA 8270. Determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS. Accredited to ISO 17025 for waters. All accreditation is matrix specific. Quantification by Internal Standard method.	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM21	TOC and TC by Combustion	PM24	Eltra preparation			AD	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes

JE Job No: 14/8799

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes

APPENDIX 4

TIER 1 SCREENING SHEETS

Image: biology Image:
Correction Database
Unit Upue Unit Upue Unit Upue Unit Upue Unit Upue Upue Unit Upue Upue Upue U
between the problem with the probl
back many vision visi
Proc Pro Proc Proc
UN N NA NA </th
minipara min nd d <
Processibility TY NA
Aching blane Yes NA
Fluence 10 ² NA A <
Phinambolane 95' NA
Intercability 2007 NA
Marce Lit Lit </th
Benzolglanthracene 7.2* NA
Chypene 19' NA OLS27 NA NA OLS2 NA OLS2 NA OLS2 NA OLS2 NA OLS2 NA OLS2 NA
Benco(h)divacambes NV NA
Barcologization 2.2" NA
Main Discrepting with a strain of the strain of t
Barcolghipeylene 320* NA N
Other Other V
Big:Certificary (hrough) primite 200 (d.8) NA S NA NA PA PA PA PA PA PA PA PA PA NA NA NA S NA S NA NA PA
Console NV NA NA NA NA NA NA NA NA Console NA NA Console NA NA NA NA Console NA NA Console NA NA NA NA Console Console NA Console Console NA NA Console Console NA Console Console NA Console Console Console NA NA<
Understanding NV NA
BANDED EPH
EPH>28-C10 27* NA NA NA NA A 21 <5 NA NA NA <5 NA <5 NA <5 NA NA <5 NA NA <5 NA NA <5 NA NA NA NA NA NA 589 NA <5 338 NA NA NA <5 NA
FPH>C10-C12 74° NA NA NA NA NA NA NA State
EPH+012-216 10 NA NA NA NA NA NA 104 56 NA NA NA 37 NA <10 NA NA <10 NA NA NA NA 2009 NA <10 3309 NA NA NA NA <10 NA
211 201 - 220 NA NA NA NA NA NA NA NA 10 51 NA NA NA 31 NA 51 NA 5
Childration Observation Observation <thobservation< th=""> <thobservation< th=""></thobservation<></thobservation<>
TPH CWG
Aliphatics
PC5C6 42 NA
266-263 10° NA
2C16-C21 6500° NA
>C21-C35 65000* NA NA NA NA NA NA NA NA 109 NA 201
PG5EU/ 70' NA
Sector 140° Na <
Sector 100° Na <
Seci2e:Cole 140° NA
SeC12_EC16 140* NA
Sector 140* NA <
Sec12 Coline Na
Sec12-EC16 100 NA
Active Na Na <th< th=""></th<>

*LQM/CIEH \$4ULs
**DEFRA C4SL
***ATRISK GAC
Exceedance of soil saturation level (Potential NAPL Present)
Exceedance of Tier 1 GAC (Residential)

-	5													Client			Watson Fuel	s											
Ο	HES	5												Location		South	idown Oils, Th	natcham											
ENVI	RONMENTAI	L												Job Number			13053												
0870	240 33	29																											
www.	ohes.cc	o.uk											R	isk Assessme	ent	Human Hea	alth (Resident Uptake)	ial with Plant											
																			•										
														Locat	tion, Depth (m) and Concer	ntration (mg/k	<u>a)</u>											
Determinant	Tier 1 Residential	WS207	WS207	WS207	WS207	WS207	WS207	WS208	WS208	WS208	WS208	WS208	WS209	WS209	WS209	WS209	WS209	WS209	WS209	WS209	WS210	WS210	WS210	WS210	WS210	WS210	WS210	WS210	WS211
	GAG (inging)	0.50-0.60	0.90-1.00	1.90-2.00	2.40-2.50	2.90-3.00	3.50-3.60	1.40-1.50	1.90-2.00	2.50-2.60	2.90-3.00	3.60-3.70	0.30-0.40	0.40-0.50	0.90-1.00	1.90-2.00	2.40-2.50	2.60-2.70	2.90-3.00	3.50-3.60	0.80-0.90	1.20-1.30	1.50-1.60	1.90-2.00	2.40-2.50	2.60-2.70	3.30-3.40	3.70-3.80	3.50-3.60
BANDED EPH																													
EPH >C8-C10	27*	NA	NA	NA	NA	<5	NA	301	NA	NA	101	NA	NA	NA	NA	NA	1140	NA	NA	NA	NA	2095	275	34	NA	213	NA	NA	NA
EPH >C10-C12	74*	NA	NA	NA	NA	19	NA	920	NA	NA	174	NA	NA	NA	NA	NA	1119	NA	NA	NA	NA	2616	324	46	NA	379	NA	NA	NA
EPH >C12-C16	140*	NA	NA	NA	NA	54	NA	3741	NA	NA	431	NA	NA	NA	NA	NA	2297	NA	NA	NA	NA	6500	791	125	NA	1032	NA	NA	NA
EPH >C16-C21	260*	NA	NA	NA	NA	61	NA	4677	NA	NA	384	NA	NA	NA	NA	NA	1616	NA	NA	NA	NA	5775	717	113	NA	1019	NA	NA	NA
EPH >C21-C35	1100*	NA	NA	NA	NA	26	NA	890	NA	NA	56	NA	NA	NA	NA	NA	724	NA	NA	NA	NA	3762	391	83	NA	264	NA	NA	NA
EPH >C8-C35	NV	<30	71	1048	NA	160	<30	10529	NA	NA	1146	<30	<30	149	<30	60	6896	<30	<30	<30	112	20748	2498	401	NA	2907	<30	<30	<30
TPH CWG																													
Aliphatics			1																										<u> </u>
>C5-C6	42*	NA	NA	NA	<0.1	NA	NA	NA	<0.1	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.1	NA	NA	NA	NA
>C6-C8	100*	NA	NA	NA	0.2	NA	NA	NA	4.6	5.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.9	NA	NA	NA	NA
>C8-C10	27*	NA	NA	NA	23.4	NA	NA	NA	59.8	67.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.3	NA	NA	NA	NA
>C10-C12	130 sol (48)*	NA	NA	NA	363.8	NA	NA	NA	1012.1	518	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	597.6	NA	NA	NA	NA
>012-016	1100 SOI (24)*	NA	NA	NA	870	NA	NA	NA	2589	11/1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1493	NA	NA	NA	NA
>016-021	65000*	INA NA	IN/A	INA NA	003	NA NA	NA	NA NA	2401	1033	NA NA	NA NA	INA NA	N/A	IN/A	IN/A	INA NA	INA NA	N/A	NA NA	IN/A	N/A	N/A N/A	NA NA	1437	IN/A	N/A N/A	N/A	N/A
Aromatics	65000	INA	NA	NA	301	NA	NA	NA	419	237	NA	INA	INA	NA	INA	NA	NA	NA	INA	INA	INA	NA	NA	NA	430	NA	NA	NA	INA
>C5-EC7	70*	NA	NA	NA	<0.1	NA	NA	NA	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	NA	NA	NA	NA
>EC7-EC8	130*	NA	NA	NA	<0.1	NA	NA	NA	NA	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.2	NA	NA	NA	NA
>EC8-EC10	34*	NA	NA	NA	0.7	NA	NA	NA	NA	2.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.5	NA	NA	NA	NA
>EC10-EC12	74*	NA	NA	NA	81.5	NA	NA	NA	NA	165.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	247	NA	NA	NA	NA
>EC12-EC16	140*	NA	NA	NA	352	NA	NA	NA	NA	561	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	866	NA	NA	NA	NA
>EC16-EC21	260*	NA	NA	NA	452	NA	NA	NA	NA	604	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	947	NA	NA	NA	NA
>EC21-EC35	1100*	NA	NA	NA	170	NA	NA	NA	NA	114	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	199	NA	NA	NA	NA
BTEX and MTBE																													
MTBE	49*	NA	NA	NA	<5	NA	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	NA	NA	NA	NA
Benzene	0.087*	NA	NA	NA	<5	NA	NA	NA	NA	0.052	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.063	NA	NA	NA	NA
Toluene	130*	NA	NA	NA	0.016	NA	NA	NA	NA	0.259	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.232	NA	NA	NA	NA
Ethylbenzene	47*	NA	NA	NA	0.061	NA	NA	NA	NA	0.212	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.332	NA	NA	NA	NA
m/p-Xylene	56*	NA	NA	NA	0.367	NA	NA	NA	NA	1.64	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.332	NA	NA	NA	NA
o-Xylene	60*	NA	NA	NA	0.229	NA	NA	NA	NA	0.736	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.812	NA	NA	NA	NA
							*LQM/CIE	H S4ULs																					

*LOM/CIEH S4ULs
**DEFRA C4SL
•••ATRISK GAC
Exceedance of soil saturation level (Potential NAPL Present)
Exceedance of Tier 1 GAC (Residential)

Client	Watson Fuels
Location	Southdown Oils, Thatcham
Job Number	13053
Risk Assessment	Human Health (Residential with Plant Uptake)

		1 Besidential																
Determinant	Tier 1 Residential	WS301	WS302	WS303	WS304	WS305	WS306	WS307	WS308	WS309	WS310							
	(33)	2.50	2.50	2.00	0.50	1.00	1.90	1.00	0.50	1.00	2.50							
voc																		
Isopropylbenzene	11*	<3	0.246	<3	0.05	0.175	0.307	0.106	0.012	<3	0.015							
Propylbenzene	34*	<4	0.53	<4	0.117	0.253	0.352	0.228	0.023	<4	<4							
1,3,5-Trimethylbenzene	NV	<3	<3	<3	0.218	1.185	<3	1.015	0.086	<3	<3							
Tert butylbenzene	NV	<5	0.085	<5	<5	<5	<5	<5	<5	<5	0.063							
1,2,4-Trimethylbenzene	0.35*	<6	3.014	<6	0.835	<6	2.267	2.871	3.14	0.012	<6							
sec-Butylbenzene	NV	<4	0.528	<4	<4	0.355	0.893	0.226	<4	<4	0.204							
4-lsopropyltoluene	NV	<4	<4	<4	0.077	0.311	<4	0.393	0.074	<4	<4							
1,3-Dichlorobenzene	NV	<4	<4	<4	<4	<4	0.025	<4	<4	<4	0.005							
1,4-Dichlorobenzene	NV	<4	<4	<4	<4	<4	0.373	<4	<4	<4	0.102							
n-Butylbenzene	NV	<4	0.897	0.02	0.195	<4	2.686	0.65	0.076	0.049	0.41							
1,2-Dichlorobenzene	NV	<4	<4	<4	<4	<4	1.677	<4	<4	<4	0.397							
Naphthalene	2.3	<27	<27	<27	<27	1.05	<27	2.658	0.12	<27	<27							
TPH CWG																		
Aliphatics																		
>C5-C6	42*	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1							
>C6-C8	100*	<0.1	4.1	<0.1	0.4	<0.5	2.5	0.2	0.8	<0.1	1.3							
>C8-C10	27*	0.9	78.9	1.3	9.4	40.5	55.2	15.1	5.5	11	49.4							
>C10-C12	130 sol (48)*	<0.2	247.2	15.1	152.3	669	461.8	605.1	363.3	207.5	142.7							
>C12-C16	1100 sol (24)*	9	661	280	793	2051	980	1363	1574	408	314							
>C16-C21	65000*	29	619	427	789	1397	907	1041	2611	218	236							
>C21-C35	65000*	22	157	145	131	257	248	242	935	43	61							
Aromatics																		
>C5-EC7	70*	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1							
>EC7-EC8	130*	<0.1	0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1							
>EC8-EC10	34*	<0.1	1.6	<0.1	0.1	0.9	1.4	0.3	<0.1	0.1	1.2							
>EC10-EC12	74*	<0.2	100.2	<0.2	36.9	250	150.6	243.9	40.8	22.7	25.9							
>EC12-EC16	140*	<4	403	50	281	958	583	626	569	129	147							
>EC16-EC21	260*	<7	458	295	502	987	651	655	1616	137	193							
>EC21-EC35	1100*	<7	72	146	85	249	146	195	658	29	40							
BTEX and MTBE					-	-				-				-	-	-		
МТВЕ	49*	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2							
Benzene	0.087*	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3							
Toluene	130*	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3							
Ethylbenzene	47*	<3	<3	<3	<3	0.051	<3	0.043	<3	<3	<3							
m/p-Xylene	56*	<5	<5	<5	0.012	<5	<5	0.138	0.013	<5	<5							
o-Xvlene	60*	<3	<3	<3	<3	<3	<3	0.015	<3	<3	<3			I		I		 1

*LQM/CIEH \$4ULs
**DEFRA C4SL
***ATRISK GAC
Exceedance of soil saturation level (Potential NAPL Present)
Exceedance of Tier 1 GAC (Residential)

Determinant	Tier 1 Screening Value (µg/l	Source									LOCATION ID										
TPH CWG Aliphatics	Calles Otherwise States)		BH01 BHA	внв	BH07 BH10	BH09	W\$212	W\$211	BH05	W5301	W\$207	W5207A	WS204	W\$205	W\$206	W502	BH04	W\$208	W\$209	BH02	BHOG
×C5-C6 ×C6-C8	10		N/A N/A	N/A N/A	N/A <	0 <10	<10	N/A N/A	N/A N/4	<10	<10	<10	<10	<10	<10	<10	N/A	<10	N/A N/A	<10	<10
>C8-C10	10		N/A	N/A N/2	N/A	0 21	<10	N/A	N/A	<10	246	36	<10	<10	13	<10	N/A	<10	N/A	54	<10
>C10-C12 >C12-C16	10		N/A N/A	N/A N// N/A N//	N/A N/A	5 <5 0 <10	347	N/A N/A	N/A N/A	<5	1563 3760	2123 9850	<5	3412	<5 <10	1837	N/A N/A	130	N/A N/A	<5	<5
>C16-C21	10		N/A	N/A N/A	N/A <:	0 <10	1260	N/A	N/A	180	3040	10810	<10	6780	<10	<10	N/A	980	N/A	<10	<10
VC21-C35 Total aliphatics C5-35	10 NV	NV	N/A N/A	N/A N// N/A N//	N/A <	0 <10 0 21	300	N/A N/A	N/A N/A	280	1720	28519	<10	2220 20172	<10	350 3667	N/A N/A	2100	N/A N/A	<10 67	<10
TPH CWG Aromatics	10		BH01 BHA	BHB N/A N/	BH07 BH10	BH09	WS212	WS211 N/A	BH05 N/A	W\$301	W\$207	W5207A	WS204	WS205	W5206	W\$02	BH04 N/A	WS208	W5209	8H02	BH06
>EC7-EC8 (Toluene)	10		N/A	N/A N//	N/A <	0 <10	<10	N/A	N/A	<10	<10	<10	<10	<10	<10	<10	N/A	<10	N/A	<10	<10
>EC8-EC10 >EC10-EC12	10		N/A N/A	N/A N// N/A N//	N/A <	0 <10 1 184	<10	N/A N/A	N/A N/A	<10 80	<10 390	<10 487	<10	<10 377	<10	<10	N/A N/A	<10	N/A N/A	<10 324	<10
>EC12-EC16	10		N/A	N/A N/A	N/A 2-	0 150	350	N/A	N/A	60	1040	3790	220	1940	240	<10	N/A	400	N/A	290	<10
>EC16-EC21 >EC21-EC35	10		N/A N/A	N/A N// N/A N//	N/A <	0 <10	800 290	N/A N/A	N/A N/A	<10	1180 550	8090 4180	<10	3440	30 <10	<10	N/A N/A	240	N/A N/A	<10	<10
Total aromatics CS-35	NV	NV	N/A	N/A N/A	N/A 6	1 334	1440	N/A	N/A	140	3160	16547	365	6997	507	<10	N/A	1562	N/A	644	<10
Banded EPH	NV	NV	BH01 BHA	N/A N/A BHB	BH07 BH10	BH09	4597 W\$212	WS211	BH05	420 W\$301	13489 W\$207	45066 WS207A	365 WS204	27169 WS205	W\$206	3667 WS02	BH04	366Z WS208	N/A W5209	8H02	<10 BH06
EPH >C8-C10 EPH >C10-C12	10 10		<10	140 2 510 18	30 N/	A N/A	N/A N/A	120 630	<10	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	130 430	N/A N/A	50 140	N/A N/A	N/A N/A
EPH >C12-C16	10		230	1520 67	630 N	A N/A	N/A	1850	<10	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	370	N/A	N/A
EPH >C21-C35	10		<10	620 20	2 770 N	A N/A	N/A N/A	1610	<10	N/A N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	110	N/A	<10	N/A N/A	N/A
EPH >C21-C40 EPH >C35-C40	10		<10	620 20 <10 <1	0 440 N/ 0 <10 N/	A N/A A N/A	N/A N/A	1610 <10	<10	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	110 <10	N/A N/A	<10	N/A N/A	N/A N/A
EPH >C8-C40	NV	NV	450 8H01 8H4	4450 180 BHR	2030 N	A N/A	N/A W\$212	6300 W\$211	<10 8H05	N/A W\$301	N/A W\$207	N/A W\$207A	N/A W\$204	N/A W\$205	N/A W\$206	N/A W\$02	2030 BH04	N/A W\$208	770 W\$209	N/A BH02	N/A BH05
Dichlorodifluoromethane	NV	NV	N/A	N/A N//	N/A N	A N/A	<2	N/A	N/A	<2	<2	N/A	<2	<2	<2	<2	N/A	<2	N/A	<2	4
Metnyi rertiary Butyl Ether Chloromethane	NV	NV	N/A N/A	N/A N/A N/A N/A	N/A N	A N/A A N/A	<0.1	N/A N/A	N/A N/A	<0.1	<0.1	N/A N/A	0.6	<0.1	0.1	<0.1	N/A N/A	<0.1	N/A N/A	0.7	<0.1
Vinyl Chloride	0.5	*****	N/A	N/A N/A	N/A N	A N/A	<0.1	N/A	N/A	<0.1	<0.1	N/A	<0.1	<0.1	<0.1	<0.1	N/A	<0.1	N/A	<0.1	<0.1
Chloroethane	NV	NV	N/A N/A	N/A N/A	N/A N	- N/A A N/A	<1	N/A N/A	N/A N/A	<1 <3	<1	N/A N/A	4	<1	<1	<1	N/A N/A	4	N/A N/A	<1	4
Trichlorofluoromethane	12	* NV	N/A	N/A N/A	N/A N	A N/A	3	N/A	N/A	<3	3	N/A	3	3	3	<3	N/A	3	N/A	3	3
Dichloromethane (DCM)	2,000	*	N/A	N/A N//	N/A N	A N/A	<5	N/A N/A	N/A N/A	<5	4	n/A N/A	3	3	<	<5	n/A N/A	হ হ	n/A N/A	<5	3
trans-1-2-Dichloroethene	NV	NV NV	N/A N/A	N/A N/A	N/A N/A	A N/A	3	N/A	N/A	<3	3	N/A	3	<3	3	3	N/A	3	N/A	<3	3
cis-1-2-Dichloroethene	NV	NV	N/A	N/A N//	N/A N	A N/A	3	N/A	N/A	<3	3	N/A	3	3	3	3	N/A	3	N/A	3	3
2,2-Dichloropropane Bromochloromethane	NV NV	NV	N/A N/A	N/A N// N/A N//	N/A N/A	A N/A	<1 <2	N/A N/A	N/A N/A	<1	<1	N/A N/A	<1	<1	<1 <2	<1	N/A N/A	<1	N/A N/A	<1	<1
Chloroform	12	•	N/A	N/A N/	N/A N	A N/A	<2	N/A	N/A	<2	<2	N/A	<2	<2	<2	<2	N/A	<2	N/A	<2	4
1,1,1-Trichloroethane 1,1-Dichloropropene	100 NV	- NV	N/A N/A	N/A N/J N/A N/J	N/A N	A N/A A N/A	<2	N/A N/A	N/A N/A	<2	<2	N/A N/A	3	<2	<2	<2	N/A N/A	4	N/A N/A	<2	3
Carbon tetrachloride	12	:	N/A	N/A N/A	N/A N	A N/A	<2	N/A	N/A	<2	<2	N/A	<2	<2	<2	<2	N/A	<2	N/A	<2	<2
1,2-Dichloroethane Benzene	30		N/A N/A	N/A N// N/A N//	N/A N	A N/A A N/A	<2	N/A N/A	N/A N/A	<2 <0.5	<2 <0.5	N/A N/A	<2 2.4	<2	<2	<2.5	N/A N/A	<2	N/A N/A	<2 4.4	<0.5
Trichloroethene (TCE)	10	•	N/A	N/A N/A	N/A N	A N/A	<3	N/A	N/A	<3	<3	N/A	3	3	3	<3	N/A	3	N/A	<3	3
1,2-Dichioropropane Dibromomethane	NV	NV	N/A N/A	N/A N/A N/A N/A	N/A N/A	A N/A A N/A	<2	N/A N/A	N/A N/A	<2 <3	<2	N/A N/A	3	<2	<2	<2	N/A N/A	3	N/A N/A	<2 <3	4
Bromodichloromethane	NV NV	NV	N/A	N/A N/A	N/A N/A	A N/A	<2	N/A	N/A	<2	<2	N/A	2	<2	<2	<2	N/A	2	N/A	<2	2
Toluene	50	•	N/A	N/A N//	N/A N	A N/A	<5	N/A	N/A	<5	<	N/A	<5	<	<5	<5	N/A	4	N/A	<	3
trans-1-3-Dichloropropene 1,1,2-Trichloroethane	NV 400	NV .	N/A N/A	N/A N// N/A N//	N/A N/A	A N/A	<2	N/A N/A	N/A N/A	<2	<2	N/A N/A	2	<2	<2	<2	N/A N/A	<2	N/A N/A	<2	2
Tetrachloroethene (PCE)	10	•	N/A	N/A N/A	N/A N	A N/A	<3	N/A	N/A	<3	<3	N/A	3	3	<3	<3	N/A	3	N/A	<3	3
1,3-Dichloropropane Dibromochloromethane	NV	NV	N/A N/A	N/A N// N/A N//	N/A N/	A N/A A N/A	<2	N/A N/A	N/A N/A	<2 <2	<2 <2	N/A N/A	2	<2	<2	<2 <2	N/A N/A	2	N/A N/A	<2 <2	<2
1,2-Dibromoethane	NV	NV	N/A	N/A N/A	N/A N	A N/A	<2	N/A	N/A	<2	<2	N/A	<2	<2	<2	<2	N/A	<2	N/A	<2	<2
1,1,1,2-Tetrachloroethane	NV	NV	N/A N/A	N/A N/A	N/A N	A N/A A N/A	<2	N/A N/A	N/A N/A	<2	<2	N/A N/A	<2	<2	<2	<2	N/A N/A	<2	N/A N/A	<2	<2
Ethylbenzene n/m-Yulenn	20		N/A	N/A N/A	N/A N/	A N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	4	N/A	<1	<1
o-Xylene	30	•	N/A	N/A N/A	N/A N/A	A N/A	<1	N/A	N/A	<1	4	N/A	<1	4	<1	<1	N/A	4	N/A N/A	<1	4
Styrene Bromoform	50 NV	• NV	N/A N/A	N/A N/A	N/A N/A	A N/A	<2	N/A N/A	N/A N/A	<2	<2	N/A N/A	- 2	<2	<2	<2	N/A N/A	<2	N/A N/A	<2	2
Isopropylbenzene	NV	NV	N/A	N/A N/	N/A N	A N/A	<3	N/A	N/A	<3	3	N/A	3	<3	<3	<3	N/A	3	N/A	<3	3
1,1,2,2-i etrachioroetnane Bromobenzene	NV	NV	N/A N/A	N/A N/A	N/A N	A N/A A N/A	<4	N/A N/A	N/A N/A	<4	<4	N/A N/A	<2	<4	<4 <2	<4	N/A N/A	<4	N/A N/A	<4	<2
1,2,3-Trichloropropane	NV	NV	N/A	N/A N//	N/A N	A N/A	<3	N/A	N/A	<3	3	N/A	3	3	3	3	N/A	3	N/A	3	3
2-Chlorotoluene	NV	NV	N/A	N/A N/A	N/A N/A	A N/A	3	N/A	N/A	<3	3	N/A	3	3	3	3	N/A	3	N/A N/A	3	3
1,3,5-Trimethylbenzene 4-Chlorotoluone	NV	NV	N/A	N/A N/A	N/A N/A	A N/A	<3	N/A	N/A	<3	3	N/A	3	3	3	<3	N/A	3	N/A	3	3
tert-Butylbenzene	NV	NV	N/A	N/A N//	N/A N	A N/A	3	N/A	N/A	-3	-3	N/A	3	3	-3	<3	N/A	3	N/A	6	3
1,2,4-Trimethylbenzene sec-Butylbenzene	NV NV	NV NV	N/A N/A	N/A N/A	N/A N/A N/A	A N/A	<3	N/A N/A	N/A N/A	<3	<3	N/A N/A	3	3	3	3	N/A N/A	3	N/A N/A	<3	3
4-Isopropyitoluene	NV	NV	N/A	N/A N//	N/A N	A N/A	3	N/A	N/A	<3	3	N/A	3	3	3	3	N/A	3	N/A	3	3
1,3-Dichlorobenzene 1.4-Dichlorobenzene	20		N/A N/A	N/A N/A	N/A N/A	A N/A	<	N/A N/A	N/A N/A	<3	3	N/A N/A	3	3	3	3	N/A N/A	<u>d</u>	N/A N/A	3	3
n-Butylbenzene	NV	NV	N/A	N/A N/A	N/A N	A N/A	<3	N/A	N/A	<3	<3	N/A	<3	3	<3	<3	N/A	4	N/A	<3	3
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	20 NV	* NV	N/A N/A	N/A N// N/A N//	N/A N/A	A N/A A N/A	<3	N/A N/A	N/A N/A	<3	<3	N/A N/A	3	<3	<3	<3	N/A N/A	3 2	N/A N/A	<3 <2	4
1,2,4-Trichlorobenzene Hexachlorobutadiene	NV 0.1	NV *	N/A N/A	N/A N// N/A N//	N/A N	A N/A	3	N/A N/A	N/A N/A	<3	3	N/A N/A	3	<3	3	3	N/A N/A	3	N/A N/A	3	3
Naphthalene	10*		N/A	N/A N/	N/A N	A N/A	<2	N/A	N/A	<2	<2	N/A	<2	<2	<2	<2	N/A	<2	N/A	<2	4
1,2,3- Inchlorobenzene BTEX & MTBE	0.4	· ·	BH01 BHA	N/A N/A BHB	BH07 BH10	BH09	W\$212	WS211	BH05	K\$301	<3 W5207	WS207A	WS204	<3 WS205	WS206	<3 WS02	BH04	WS208	WS209	BH02	BH06
Methyl Tertiary Butyl Ether Benzene	NA 30	NV	N/A N/A	N/A N//	N/A N	A N/A	<0.1	N/A	N/A N/A	<0.1	<0.1	N/A N/A	0.6	<0.1	0.1	<0.1	N/A N/A	<0.1	N/A N/A	0.7	<0.1
Toluene	50	•	N/A	N/A N//	N/A N	A N/A	<5	N/A	N/A	<5	5	N/A	<5	<	<5	<5	N/A	<5	N/A	<5	<
Ethylbenzene p/m-Xylene	20 30		N/A N/A	N/A N/A	N/A N/A N/	A N/A	<1	N/A N/A	N/A N/A	<1	<1	N/A N/A	4	0	<1	<1	N/A N/A	4	N/A N/A	<1	<1
o-Xylene	30	•	N/A	N/A N//	N/A N	A N/A	<1	N/A	N/A	<1	-2 <1	N/A	<1	4	<1	<1	N/A	<1	N/A	<1	<1
SVOC MS Phenols			BH01 BHA	BHB	BH07 BH10	BH09	W\$212	W5211	BH05	W5301	W\$207	W5207A	W5204	W5205	W\$206	W502	BH04	W5208	W5209	BH02	8H05
2-Chlorophenol	50	:	N/A	N/A N/A	N/A N	A N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
2-Nitrophenol	NV	NV	N/A	N/A N/A	N/A N	A N/A	<0.5	N/A N/A	N/A N/A	<0.5	<0.5	n/A N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	n/A N/A	<0.5	<0.5
2,4-Dichlorophenol 2,4-Dimethylphenol	20 NV	* NV	N/A N/A	N/A N/A N/A N/A	N/A N/A	A N/A	<0.5	N/A N/A	N/A N/A	<0.5	<0.5 <1	N/A N/A	<0.5	<0.5	<0.5 <1	<0.5	N/A N/A	<0.5	N/A N/A	<0.5 <1	<0.5
2,4,5-Trichlorophenol	NV	NV	N/A	N/A N/A	N/A N	A N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	N/A	<0.5	<0.5
4-Chloro-3-methylphenol	NV 40	*	N/A N/A	N/A N/A	N/A N	- N/A A N/A	<0.5	N/A N/A	N/A N/A	<1 <0.5	<0.5	N/A N/A	<1	<1	<1	<1 <0.5	N/A N/A	<0.5	N/A N/A	<0.5	<0.5
4-Methylphenol 4-Nitrophenol	100 NV	* NV	N/A N/A	N/A N/A N/A N/A	N/A N/A	A N/A A N/A	<1 <10	N/A N/A	N/A N/A	<1	<1 <10	N/A N/A	<1 <10	<1 <10	<1 <10	<1	N/A N/A	<1	N/A N/4	<1 <10	<1
Pentachlorophenol	2	:	N/A	N/A N//	N/A N	A N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1

PAHs			BH01	BHA	BHB	BH07	BH10	BH09	WS212	WS211	BH05	WS301	WS207	WS207A	WS204	WS205	WS206	WS02	BH04	WS208	WS209	BH02	BH06
2-Chloronaphthalene	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
2-Methylnanhthalene	NV	NV	N/A	N/A	N/A	N/A	N/A	Ν/Δ	- 1	N/A	N/A	- 1	-1	N/A	c1	- 1	<1	<1	N/A	-1	N/A	<1	<1
2-wetrymaphtnalene	101	*	N/A	11/0	19/14	14/74	11/1	11/A	1	11/14	14/4	1	~1	N/A	~1	~1	~1	~1	11/14	~1	11/14	~1	~1
Naprinalene	10.		N/A	IN/A	<0.1	IN/A	0.2	0.4	<1 (1	<0.1	N/A	<1 (1	~ ~ ~	<0.1	(1)	×1	~ ~ ~	×1	<0.1	<	N/A	41	×1
Acenaphthylene	0.2***	***	N/A	N/A	0.095	N/A		0.174	<0.5	0.032	N/A	<0.5	<0.5	< 0.013	<0.5	<0.5	<0.5	<0.5	0.177	<0.5	N/A	<0.5	<0.5
Acenaphthene	0.2***	***	N/A	N/A	0.683	N/A		0.708	<1	0.05	N/A	<1	<1	0.068	<1	<1	<1	<1	0.459	<1	N/A		<1
Fluorene	0.2***	***	N/A	N/A	2.022	N/A	3.537	1.619	<0.5	0.327	N/A	1.5	4.5	0.114	1.5	<0.5	4.7	<0.5	1.037	<0.5	N/A		<0.5
Phenanthrene	0.2***	***	N/A	N/A	0.041	N/A		0.74	<0.5	0.059	N/A	<0.5	2.2	< 0.011	<0.5	<0.5	<0.5	<0.5	0.554	<0.5	N/A	4.2	<0.5
Anthracene	0.1*	*	N/A	N/A	0.045	N/A	0.022	0.016	<0.5	0.016	N/A	<0.5	<0.5	<0.012	<0.5	<0.5	<0.5	<0.5	<0.012	<0.5	N/A	<0.5	<0.5
Eluoranthono	0.1**	**	N/A	N/A	0.045	N/A	0.022	0.010	<0.5	0.010	N/A	<0.5	<0.5	40.015	<0.5	<0.5	<0.5	<0.5	-0.015	<0.5	N/A	<0.5	<0.5
Pluorantinene	0.1		N/A	N/A	0.017	N/A	0.026	0.014	-0.5	0.097	11/A	-0.5	-0.5	0.243	-0.5			-0.5	0.034		N/A		-0.5
Pyrene	0.2***		N/A	N/A	0.035	N/A	0.062	0.036	<0.5	0.114	N/A	<0.5	<0.5	1.666	<0.5	<0.5	<0.5	<0.5	0.064	<0.5	N/A	<0.5	<0.5
Benzo(a)anthracene	0.2***	***	N/A	N/A	< 0.015	N/A	<0.015	< 0.015	<0.5	0.021	N/A	<0.5	<0.5	0.058	<0.5	<0.5	<0.5	<0.5	< 0.015	<0.5	N/A	<0.5	<0.5
Chrysene	0.2***	***	N/A	N/A	< 0.011	N/A	< 0.011	<0.011	<0.5	0.035	N/A	<0.5	<0.5	0.382	<0.5	<0.5	<0.5	<0.5	< 0.011	<0.5	N/A	<0.5	<0.5
Benzo(bk)fluoranthene	0.03***	***	N/A	N/A	< 0.018	N/A	<0.018	< 0.018	<1	0.029	N/A	<1	<1	0.165	<1	<1	<1	<1	< 0.018	<1	N/A	<1	<1
Benzo(a)pyrene	0.05*	*	N/A	N/A	< 0.016	N/A	< 0.016	< 0.016	<1	< 0.016	N/A	<1	<1	0.059	<1	<1	<1	<1	< 0.016	<1	N/A	<1	<1
Indeno(123cd)pyrene	0.002*	*	N/A	N/A	< 0.011	N/A	< 0.011	< 0.011	<1	< 0.011	N/A	<1	<1	0.035	<1	<1	<1	<1	< 0.011	<1	N/A	<1	<1
Dibenzo(ab)anthracene	0 2***	***	N/A	N/A	<0.01	N/A	<0.01	<0.01	<0.5	<0.01	N/A	<0.5	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5	<0.01	<0.5	N/A	<0.5	<0.5
Banza(ahi)nandana	0.003*	*	N/A	N/A	+0.011	N/A	+0.011	+0.011	<0.5	+0.011	N/A	<0.5	<0.5	0.05	<0.5	<0.5	<0.5	<0.5	+0.011	<0.5	N/A	<0.5	<0.5
Deshalataa	0.002		DU01	DUA	0.011	BU07	RU10	0.011	14(521.2	WC211	BUOF	14(5201	WIC207	14/52074	10.5	WEDDE	10.5	14/502	0.011	10.5	14/5200	0.0	BLIOC
Pittialates	12	*	BHU1	DRA N/A	BHD N/A	BHU/	BH10	BHU9	W5212	W5211	BHUS N/A	W3501	W3207	WS207A	W3204	W3205	VV5206	VV302	BH04	VV3208	W3209	0002	BRU0
Dis(2-ethymexyl) phinalate	20	*	N/A	N/A	N/A	N/A	N/A	N/A	2 4	N/A	N/A	2 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N/A		~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N/A	1	N/A		~~
Bucyibenzyi prichalate	20		IN/A	N/A	N/A	IN/A	N/A	N/A	<1 (1	IN/A	N/A	<1 (1	~ ~ ~	IN/A	(1)	×1		×1	N/A	<1 ×1	IN/A		×1
Di-n-butyl phthalate	8		N/A	N/A	N/A	N/A	N/A	N/A	<1.5	N/A	N/A	<1.5	<1.5	N/A	<1.5	<1.5	<1.5	<1.5	N/A	<1.5	N/A	<1.5	<1.5
Di-n-Octyl phthalate	8		N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
Diethyl phthalate	200	*****	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
Dimethyl phthalate	800	*****	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
Other SVOCs			BH01	BHA	внв	BH07	BH10	BH09	WS212	WS211	BH05	W\$301	W\$207	WS207A	WS204	W\$205	WS206	WS02	BH04	WS208	WS209	BH02	BH06
1,2-Dichlorobenzene	1000	*****	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	2
1,2,4-Trichlorobenzene	0.4	*	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
1,3-Dichlorobenzene	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
1 A-Dichlorobenzene	300	*****	N/A	N/A	N/A	N/A	N/A	M/A	-1	N/A	NI/A	-1	-1	N/A	-1	0	-1	-1	N/A		N/A	-1	-1
2.Nitroaniline	500 NV	NV/	N/A	N/A	N/A	N/A	N/A	N/A	4	N/A	N/A	4		N/A		~ ~			N/A		N/A		41 24
2 4 Disitratelyana	197	NV NV	IN/A	N/A	N/A	N/A	IN/A	nv/A	<1	N/A	IN/A	<1	1	IN/A	1>	10	<1	<1	N/A	1>	N/A	<1	1>
2,4-Dimitrotoluene	NV	NV NV	N/A	N/A	N/A	N/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	N/A	<0.5	<0.5
2,6-Dinitrotoluene	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
3-Nitroaniline	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
4-Bromophenylphenylether	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
4-Chloroaniline	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	l N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
4-Chlorophenylphenylether	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
4-Nitroaniline	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	< 0.5	<0.5	N/A	<0.5	N/A	<0.5	<0.5
Azobenzene	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	N/A	<0.5	<0.5
Bis(2-chloroethoxy)methane	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	N/A	<0.5	< 0.5
Bis(2-chloroethyl)ether	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	4	N/A	N/A	4	- 1	N/A	<1	4	<1		N/A	1	N/A	<1	<1
Cashanala	100	NV NV	N/A	N/A	N/A	N/A	N/A	N/A	10	N/A	N/A	10	10	N/A	10	10	-0.5	10	N/A	10	N/A	1.0	
Carbazole	NV	NV	N/A	IN/A	N/A	IN/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	IN/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	IN/A	1.6	<0.5
Dibenzofuran	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	N/A	2.1	<0.5
Hexachlorobenzene	0.03	*	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
Hexachlorobutadiene	0.1	*	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
Hexachlorocyclopentadiene	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
Hexachloroethane	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<1	N/A	N/A	<1	<1	N/A	<1	<1	<1	<1	N/A	<1	N/A	<1	<1
Isophorone	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	N/A	<0.5	<0.5
N-nitrosodi-n-nronylamine	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	<0.5	N/A	N/A	<0.5	<0.5	N/A	<0.5	<0.5	<0.5	<0.5	N/A	<0.5	N/A	<0.5	<0.5
Nitrohonnon	80/	NV/	N/A	N/A	N/A	N/A	N/A	N/A	-0.5	N/A	N/A	-0.5	-0.5	N/A	-0.5	-0.5	-0.5	-0.5	N/A	-0.5	N/A	-0.5	-0.5
Nitiobenzene	144	NV	N/A	11/1	0110	14/7	N/A	N/A		11/14	DUOS		11/2007	10/14	11/2201	11/52.05	11/2202	11/202	N/A	11/2200	N/A	21	21
<u>Metals</u>	0.05	•	BHUI	BHA	внв	BHU7	BHIU	BHU9	W5212	W5211	BHUS	W\$301	WS207	WS207A	WS204	W5205	WS206	WS02	BH04	WS208	WS209	BHUZ	BHU5
Dissolved Arsenic	0.05		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Bandhiver	100	NIV/	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Beryllium	1000	NV	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	IN/A	N/A	N/A
Dissolved Boron	1000	•	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	IN/A	N/A	N/A
Dissolved Cadmium	0.08		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Dissolved Chromium	50		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Copper	1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Ledu	7.2		IN/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Mercury	0.05		N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved NICKEI	20	****	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Selenium	00	*****	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Solver	0.05	****	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Sodium	200000	****	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Vanadium	20		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dissolved Zinc	8	*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Others			BH01	вна	внв	BH07	BH10	BH09	WS212	W\$211	BH05	W\$301	WS207	WS207A	WS204	W\$205	WS206	WS02	BH04	WS208	WS209	BH02	BH06
I otal Dissolved Sulphur	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fluoride	1 mg/l	***	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sulphate	250 mg/l	****	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chloride	250 mg/l	*****	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrate as NO3	25 mg/l	**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ortho Phosphate as PO4	NV	NV	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Cvanide	0.001 mg/l	*****	N/A	Ν/Δ	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	N/A	N/A	N/A	N /Δ	N/A	N/A	N/A	N/A	N/4	N/A	N/A
nu	6 0	**	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	IN/A	N/A	1V/A	N/A	N/A	N/A	14/A	N/A	N/A	N/A	N/A	N/A	N/A
pri .	0-9		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	in/A	N/A	N/A	N/A	N/A	N/A	N/A
		Exceedance of Tior 1 Second	a Level		_	_	_																
		* UK EQS Screening Value	ue																				
"The River Ba	sin Districts Typology, Standards and Gro	undwater threshold values (Wa	ater Framework Directive)	England and Wales) D	Directions 2010			1															
	*** Guideline Value f	or the protection of Surface Wa	ater for potable Abstractio	n				1															
		*****UK Drinking Water Stan	idard					4															
		*****List II Substances						4															
	EDA Towards Satting Cold-	WHO arinking water gui	d Groundwater in Ircland	Interim Report				4															
L	Er A rowards bedung Guider							4															

Exceedance of Tier 1 Screening Level
* UK EQS Screening Value
**The River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions 2010
*** Guideline Value for the protection of Surface Water for potable Abstraction
****UK Drinking Water Standard
*****List II Substances
******WHO drinking water guideline
******EPA Towards Setting Guideline Values for the Protection of Groundwater in Ireland - Interim Report