

Gillingham SSA Foul Drainage Strategy

A055606

Welbeck Strategic Land, C G Fry & Son Ltd and Taylor Wimpey

May 2017 Prepared on behalf of WYG Engineering Limited

Geneva Building, Lakeview Drive, Sherwood Business Park, Annesley, Nottingham, NG15 0ED Tel: +44 (0)1623 684 550 Fax: +44 (0)1623 684 551 Email: nottingham@wyg.com Website: www.**wyg**.com

WYG Engineering Limited. Registered in England & Wales Number: 01959704 Registered Office: Arndale Court, Otley Road, Headingley, Leeds, LS6 2UJ

Document control

Document:	Foul Drainage Strategy
Project:	Gillingham SSA
Client:	Welbeck Strategic Land, C G Fry & Son Ltd and Taylor Wimpey
Job Number:	A055606
File Origin:	

Revision:			
Date:	May 2017		
Prepared by:		Checked by:	Approved By:
Colin Davidson		Colin Davidson	Peter Sparham
Description of revision:			

Revision:				
Date:				
Prepared by:		Checked by:	Approved By:	
Description of re	vision:			

Revision:				
Date:				
Prepared by:	C	Checked by:		Approved By:
Description of revision:				

Contents

1.0	Scop	e1
2.0	Intro	oduction2
3.0	Exist	ing Public Foul Sewers
	3.1	Park Farm
	3.2	Ham Farm & Newhouse Farm
	3.3	Lodden Lakes
4.0	Wes	sex Water Correspondence5
	4.1	Option 1 – Business Plan 2012 Option 5
	4.2	Option 2 – New Sewerage Pumping Station Option
5.0	Outli	ine Foul Drainage Strategy9
	5.1	Park Farm Pumping Station
	5.2	Existing Garden Centre Pumping Station10
	5.3	Lodden Lakes Pumping Station10
	5.4	Foul Flows10
	5.5	Storage at Pumping Stations11
	5.6	Off-site works12
	5.7	Phasing12
6.0	Cond	clusions
7.0	Appe	endices14

Appendices

- Appendix A Wessex Water Sewer Record Plans
- Appendix B Wessex Water correspondence
- Appendix C Foul Drainage Strategy Plans A055606-001 and A055606-002
- Appendix D MicroDrainage Network Details
- Appendix E Terence O' Rourke Density Plan and Phasing Plan

1.0 Scope

As part of the scoping exercise for the development, North Dorset District Council(NDDC) has indicated that the Environmental Statement should include a foul drainage strategy. This report has therefore been produced to address the requirements of NDDC in respect of the foul drainage strategy.

The scope of the foul drainage strategy will consider the following points;

- Development proposals and phasing arrangements for the site
- Points of connection to the public foul sewer
- Gravity or pumped discharges
- Schematic proposals with design flows for critical sewer routes and adoption requirements
- Trigger points for capacity improvements
- Off-site requisition arrangements/capacity improvements

2.0 Introduction

This report presents the proposed high level foul drainage strategy for the development of up to 1,800 new dwellings, the construction of a new primary school, an extension to an existing primary school and a local centre on land to the south of Gillingham, Dorset.

A Pre-Planning Enquiry has been undertaken with Wessex Water, and the response provided, together with subsequent correspondence forms the basis of the foul drainage strategy.

A variety of topographical survey drawings, covering the different areas of the site have been reviewed together with LiDAR level data covering any areas not included within the more detailed surveys. This data has been used to assess suitable routes for critical foul sewer runs and to establish where pumping of flows may be required.

The foul flows entering the critical foul sewers at various locations has been estimated using the development masterplan (Illustrative master plan drawing number 220701/U/SK/IMP/001 produced by Terence O'Rourke). Reference has also been made to the Terence O' Rourke Ltd South Consortium density plan, which provides further details of the density of dwellings within residential areas of the site.

The proposed phasing of the development has also been considered, and reference has therefore been made to the Phasing plan produced by Terence O'Rourke.

For further details and location of the different parcels of land please refer to Chapter 3 of the Environmental Statement.

3.0 Existing Public Foul Sewers

Wessex Water foul sewerage assets are shown on asset location plans included within Appendix A and are described below:-

3.1 Park Farm

A 300mm diameter public foul water sewer (FWS) runs across the site. The sewer enters the east site boundary adjacent Fern Brook and flows west across the site. The sewer leaves the west site boundary at Fern Brook Lane.

A 150mm diameter foul water sewer runs across the site from the south east and connects to the 300mm public foul sewer. The 150mm foul sewer run commences to the south east of Kingsmead Business Park and receives flow from the Park Farm pumping station via a 100mm diameter rising main. The sewer flows in a north easterly direction before turning north west at the east corner of Kingsmead Business Park. The sewer runs just inside the site boundary before turning north, at a location at the north western corner of the proposed primary school, and then connects to the 300mm public sewer on site.

3.2 Ham Farm & Newhouse Farm

There are no public foul sewers shown within either the Ham Farm or Newhouse Farm site boundaries.

3.3 Lodden Lakes

A 300mm diameter public foul sewer runs across the north of the site from east to west. The sewer flows south, to the east of the River Lodden before turning south west (approximately adjacent the play area to rear of Wren Place) to cross the River Lodden. The sewer enters the north boundary of the site (adjacent The Meadows) and flows to the south west. The sewer then changes direction to flow north west at a point located at the north east corner of Lodden Lakes site. The sewer then leaves the west boundary of the site.

Additionally, there is an existing 225mm diameter public foul sewer located to the north of the site. The sewer flows south between the River Lodden and the rear of the existing

Gillingham SSA – Foul Drainage Strategy

residential properties on Addison Close. The sewer connects to the 300mm sewer described in the paragraph above just outside the site boundary.

A 150mm foul sewer is also shown flowing in a south easterly direction within The Meadows. This sewer discharges to the 300mm foul sewer which crosses the site and again the point of connection is location just north of the Site boundary.

4.0 Wessex Water Correspondence

A Pre-Planning Enquiry was made to Wessex Water (WW) in February 2013 to request local capacity details and a connection strategy in respect of foul water drainage services for the development. In response to this enquiry, WW confirmed that the existing foul sewerage network in the site vicinity does not have sufficient capacity to receive the foul flows generated by the development and off-site sewerage network reinforcement would be required.

More recently, in October 2015, further correspondence has been undertaken with WW to refresh the enquiry. Details of the current proposed scheme were provided to WW and a more refined scope of off-site network reinforcement works was requested.

In a letter dated 2nd December 2015, WW provided an update; a copy of this correspondence is provided in Appendix B. A summary of the key points is outlined below.

The southern part of Gillingham drains via a 300mm foul sewer which crosses the site in two locations. The 300mm foul sewer outfalls to Brickyard Lane Foul Pumping Station downstream of the site which pumps flows directly to Common Mead Lane Sewerage Treatment Works. Existing foul sewers between the site and Brickyard Lane Sewerage Pumping Station are reported to be laid at depths of up to 8m below ground level.

The proposed developments will double the size of the catchment discharging to the Brickyard Lane Sewerage Pumping Station and therefore significant new infrastructure will be required. In addition, an Environment Agency permit review will be required in respect of the operation of the Brickyard Lane Pumping Station.

WW has initially proposed two possible schemes to provide the necessary capacity within its network to serve the development. These schemes are outlined below and are shown indicatively within Figures 2 and 3.

4.1 Option 1 – Business Plan 2012 Option

The first option is based on a scheme which was identified as part of the WW Business Plan in 2012. The scheme of off-site reinforcement works is outlined as follows: -

• Replacement of 150 m length of existing 300mm diameter sewer with 2 x 1 m box culvert with a hydroslide to restrict pass forward flow (location annotated A on Figure 1 below);

- Replacement of 240 m length of existing 300mm diameter sewer with 375mm diameter sewer (location annotated B on Figure 1 below);
- Construction of 800 m length of new 1600mm diameter sewer connected to existing network with a new bifurcation manhole (location annotated C on Figure 1 below);
- Works to provide additional capacity at the Brickyard Sewerage Pumping Station (SPS) located to the north west of the site (location D on Figure 1 below).

Figure 1 – Off-site Sewerage Upgrades – Option 1 (Business Plan 2012 Option)

In respect of the on-site foul drainage networks, a foul pumping station will potentially be required on the Ham Farm site to discharge foul flows to the existing foul sewerage network.

4.2 Option 2 – New Sewerage Pumping Station Option

A second option is outlined within the latest WW correspondence which involves a new sewerage pumping station constructed on site to serve only the Gillingham Southern

Extension development. New infrastructure work involved in this alternative scheme is shown in Figure 2 on the following page, and is outlined as follows.

- Laying approximately 1km of new 225/300mm sewer (2-3m deep) within the river corridor to the north of the Site. This off-site sewer will convey foul flows from the Park Farm Site (600 new properties assumed) through open land to the Lodden Lakes Site.
- Construction of a 300mm oversize foul sewer through the Lodden Lakes Site.
- Construction of a new sewerage pumping station to the south west of the Lodden Lakes site and outside of the flood plain. The new pumping station would require 288m³ of storage and is initially estimated to require a depth of 9m.
- A new 250mm diameter rising main laid from the new pumping station and discharging directly to the existing Brickyard Lane pumping station.
- The construction of a new wet well at the existing Brickyard Lane Sewerage Pumping Station with approximately 300m³ of storage.
- The existing pumps at Brickyard Lane Sewerage Pumping Station will need to be upgraded to discharge at 85 l/s and approximately 400m of new 400mm diameter rising main will be required between the existing pumping station and the sewerage treatment works.

Gillingham SSA – Foul Drainage Strategy

Figure 2 – Off-site Sewerage Upgrades – Option 2 (New Sewerage Pumping Station Option)

The options for off-site sewer improvements set out by Wessex Water have been considered as part of the foul drainage strategy. The two options put forward by Wessex Water involve 3 potential connection points as follows;

- A potential connection to the existing foul 300mm foul sewer in the north of the Park Farm site (subject to network reinforcement);
- A potential connection to the deep 300mm foul sewer flowing through the Lodden Lakes site (subject to network reinforcement);
- And / or, a new pumped connection directly to the existing Brickyard Lane foul pumping station (subject to network reinforcement).

A proposed on-site foul drainage network is considered in the following section.

5.0 Outline Foul Drainage Strategy

The proposed foul drainage strategy for the development is shown on drawings A055606-001 and 002 included within Appendix C. The network is indicative only and provides a strategy for the entire site. It is important to note that the indicative network outlined represents only the strategic level sewers. Additional foul sewer branches will be required to serve side streets and cul-de-sacs. Further to this, additional manholes may be required to suit detailed site layout plans and fully comply with the requirements of Sewers for Adoption 7th Edition.

The topography of the site favours a foul drainage strategy with two catchments. The eastern catchment, draining the Park Farm site, flows in a northerly direction following the slope of the ground towards the existing 300mm foul sewer and Fern Brook in the north. The eastern catchment could potentially connect to either the upgraded existing 300mm sewer (Wessex Water option 1 scheme) or the new off-site outfall sewer following the River corridor as described within the Wessex Water option 2 scheme.

The proposed phasing of the scheme involves commencing construction from several locations across the site concurrently. This is likely to result in high up front capital costs as it will be necessary to put a large portion of the strategic foul sewers in place at the beginning of the build programme. The phasing does, however, provide an opportunity to avoid off-site works within third party land. Whilst the connection points for the eastern catchment suggested by Wessex Water remain viable (and may be preferred depending on construction programmes) an alternative connection method involving pumping flows to the western catchment is shown on the drainage strategy plan.

The western catchment (Ham Farm, Newhouse Farm and Lodden Lakes) generally slope down toward the River Lodden which flows through the middle of the western catchment. It is proposed to drain the western catchment to a new pumping station located just outside of the Flood Risk Zone 3 area on the northern side of the River Lodden (south west corner of the Lodden Lakes site).

As described above the strategy involves two pumping stations for foul flows to be pumped to the Brickyard Lane pumping station to the north west of the site and ultimately to Common Mead Lane Sewerage Treatment Works.

5.1 Park Farm Pumping Station

The majority of the Park Farm site will drain to the proposed pumping station in the north east corner of the site as the site generally slopes from south to north towards the watercourse. Flows will be pumped from the pumping station to the southern boundary of the site where they will discharge to a gravity sewer. The gravity sewer will flow south west off-site, past the existing garden centre and enter the Ham Farm site at the eastern boundary.

5.2 Existing Garden Centre Pumping Station

Flows from the existing garden centre are currently pumped a relatively small distance to the existing foul sewer within the Park Farm site. It is proposed that foul flows from the garden centre would be connected to the proposed new gravity foul sewer and it may be possible to abandon the existing pumping station serving the garden centre (subject to existing levels).

5.3 Lodden Lakes Pumping Station

The Lodden Lakes pumping station will be positioned to the south west of the Lodden Lakes site and will receive flows from the north via a foul sewer serving the Lodden Lakes development and from the south via a foul sewer serving Ham Farm and Newhouse Farm together with the pumped flows from Park Farm. The foul sewer that connects to the pumping station from the south will need to pass under the River Lodden before connecting to the pumping station.

5.4 Foul Flows

The proposed foul drainage network has been modelled within the Network module of the software package MicroDrainage. The outputs from the analysis are included within Appendix D. Foul flows from the site are generated from the residential dwellings together with a new primary school, an extension to an existing primary school and a local centre. The peak foul flow rates from these areas were calculated as follows:

- Residential dwellings 4000 l/dwelling/day for 1800 dwellings
- Schools (x2) 90 l/s/person for 420 pupils based on an 8 hour day and a peak flow factor of 6
- Local Centre $3 I/m^2$ for 7000m² based on a 12 hour day and a peak flow factor of 6

The approximate quantum of dwellings within each residential parcel has been calculated from the Terence O' Rourke Ltd South Consortium density plan.

The MicroDrainage analysis has been carried out through two separate models. The first model is for the eastern catchment (Park Farm) and provides an approximate indication of the cover levels and invert levels for the proposed foul sewers together with an indication of the foul flow and pipe sizes required. The network receives flows from a total of 626 residential dwellings and a new primary school. The proposed network requires pipes ranging from 150 - 225mm in diameter and is located at depths ranging from 1.35 to approximately 6m below ground at the deepest point.

The second model is for the gravity foul sewers that originate from the western catchment (Ham Farm, Newhouse Farm and Lodden Lakes sites) and discharge to the proposed pumping station located south west of Lodden Lakes. This network also receives flow from the 626 dwellings and new primary school located within the eastern catchment. The model shows that the network requires pipe sizes ranging from 150 – 375mm in diameter and is approximately 5.5m below ground at its deepest point.

5.5 Storage at Pumping Stations

Sewers for Adoption states that to ensure that sewage flooding does not occur at, or upstream of, the pumping station during plant or power failure, additional storage should be provided. As a minimum, the storage should equate to 160 litres/dwelling, and for commercial or industrial developments 1 hour of peak design flow. Therefore, the storage for the two proposed pumping stations is as follows:

Park Farm pumping station

626 dwellings x 160 litres = $100m^3$

7.9 l/s from new primary school x 60 x $60 = 28.5 \text{m}^3$

Total storage required = $128.5m^3$

Lodden Lakes pumping station

1800 dwellings x 160 litres = $288m^3$

15.8 l/s from new school and school extension x 60 x 60 = $57m^3$

2.9 l/s from local centre x 60 x 60 = $10.5m^3$

Total storage required = $355.5m^3$

5.6 Off-site works

In line with the second option outlined by Wessex Water, off-site works will be required for the new pumping station to discharge to the existing Brickyard Lane pumping station. Although the proposed drainage strategy varies from the option 2 strategy provided by WW (proposed off-site sewer from eastern catchment replaced by proposed onsite sewers) both strategies utilise a pumping station to the south of the Lodden Lakes site that receives flow from the entire development. Therefore, the off-site works that were required by WW are valid for the proposed strategy and are as follows:

- A new 250mm diameter rising main laid from the new pumping station and discharging directly to the existing Brickyard Lane pumping station.
- The construction of a new wet well at the existing Brickyard Lane Sewerage Pumping Station with approximately 300m³ of storage.
- The existing pumps at Brickyard Lane Sewerage Pumping Station will need to be upgraded to discharge at 85 l/s and approximately 400m of new 400mm diameter rising main will be required between the existing pumping station and the sewerage treatment works.
- The proposed strategy also requires off-site works within the highway between the south west boundary of the Park Farm site and the eastern boundary of the Ham Farm site.

5.7 Phasing

In order to construct the development based on the phasing arrangement indicated on the Terence O'Rourke Ltd South Consortium density plan, included within Appendix E, the entire foul sewer network including both pumping stations will be required to be installed for phase 2 of the development. This is due to the fact that most of the early phases of the development are located relatively close to Shaftesbury Road which is approximately the furthest point from the two proposed pumping stations.

6.0 Conclusions

The proposed development includes the construction of up to 1,800 new dwellings, a new primary school, an extension to an existing primary school and a local centre on land to the south of Gillingham, Dorset.

The proposed foul drainage strategy requires the use of two new foul pumping stations. The majority of the Park Farm site will drain to the proposed pumping station in the north east corner of the site as the site generally slopes from south to north towards the watercourse. Flows will be pumped from the pumping station to the southern boundary of the site where they will discharge to a gravity sewer.

The Lodden Lakes pumping station will be positioned to the south west of the Lodden Lakes site and will receive flows from the north via a foul sewer serving the Lodden Lakes development and from the south via a foul sewer serving Ham and Newhouse Farm together with the pumped flows from Park Farm.

The strategic network will require sewers ranging from 150 - 375mm in diameter and will be less than 6m below ground level at its deepest point.

Off-site works will be required to connect the proposed Lodden Lakes pumping station to the existing Brickyard Lane and ultimately to the Common Mead Lane Sewerage Treatment Works.

Based on the proposed phasing arrangement, the entire strategic foul network will need to be installed for construction of phase 2 of the development.

A strategic foul drainage strategy has been provided for the proposed development. The network is indicative only and provides a strategy for the entire site.

Gillingham SSA – Foul Drainage Strategy

7.0 Appendices

- Appendix A Wessex Water Sewer Record Plans
- Appendix B Wessex Water correspondence
- Appendix C Foul Drainage Strategy Plans A055606-001 and A055606-002
- Appendix D MicroDrainage Network Details
- Appendix E Terence O' Rourke Density Plan and Phasing Plan

Gillingham SSA – Foul Drainage Strategy

Appendix A

Wessex Water Sewer Record Plans

Wessex Water

Claverton Down Bath BA2 7WW Telephone 01225 526000 www.wessexwater.co.uk

Our Ref: N 167689

Your Ref:

Atkins Global FAO Mr Tanveer Ahmed Tajir The Hub 500 Park Avenue Aztec West Almondsbury, Bristol, BS32 4RZ

16 November 2015

Dear Sir

Ref: Site East & West of Shaftesbury Road, Gill

Gillingham

Thank you for your enquiry concerning the above. Please note that the following information does not constitute an approval to alter/divert/buildover or connect to any Wessex Water apparatus.

• A plan showing Wessex Water's public services is enclosed. The details are diagramatical only and their accuracy cannot be guaranteed.

Waste

- There are existing public sewers available on site/within the vicinity. There may also be private sewers for which we hold no records.
- The public sewers may be affected by your proposals and the exact position of these services should be located by careful inspection/survey before any works commence. Normally, no new building or similar works will be allowed within a minimum of 3.0m of these services.

On 1st October 2011 Wessex Water became responsible for the ownership and maintenance of thousands of kilometres of formerly private sewers and lateral drains (section 105a sewers). Many of these additional pipe lines run at the rear or side of domestic properties in addition to the existing public sewers shown on our record plans.

They will commonly be affected by extension proposals and either not shown on the public sewer record plans or their indicated position will be approximate only. It is important to undertake a full survey of the site and surrounding land to determine the local drainage arrangements and to contact us at an early stage if you suspect that a section 105a sewer may be affected. More information about this can be found via our website www.wessexwater.co.uk.

Continue-

Wessex Water Services Limited Registered office as above Registered in England No.2366648 Printed on 100% recycled paper

Wessex Water

Claverton Down Bath BA2 7WW Telephone 01225 526000

www.wessexwater.co.uk

Supply

- There are public water mains available on site/within the vicinity. There may also be private water mains for which we hold no records.
- The public water mains may be affected by your proposals and the exact position of these services should be located by careful inspection/survey before any works commence. Normally, no new building or similar works will be allowed within a minimum of 3.0m of these services.

Yours faithfully

m. morement

Asset Searches Team Tel: 01225 526422 e-mail: asset.enquiries@wessexwater.co.uk

Wessex Water Services Limited Registered office as above Registered in England No 2366648 Printed on 100% recycled paper

a YTL company

Location: East/West Shaftsbury Road, Gillingham

Drawing Number: 1 of 1

Scale: 1:2500

Date Printed: 16/11/2015

WASTE NETWORK LEGEND

Colours generally indicate the use of the sewer/drain e.g. Red Foul Dark Blue Surface Magenta Combined/Dual Use ----- Inlet Light Green Highway Drain Mid Green Overflow

Styles of line are shown on the key in sample/typical colours

BOUNDARIES

Section 104 Site

STRUCTURES Manhole - Foul Manhole - Surface Manhole - Combined ---- Outfall Lamphole Bifurcation - Foul

- Bifurcation Surface Bifurcation - Combined
- Combined Sewage Overflow 📓 Hatch Box
- A Pumping Station Surface Other
- A Pumping Station Foul/Combined
- d Gully Vent Column Rodding Eye Catchpit Flushing Chamber Soakaway Non Return Valve Air Valve X Washout

1

4

PUBLIC SEWERS ---------1 - Same Same ____D____ ___?____?____

---- Foul Sewer Surface Water Sewer Combined Sewer **Rising Main** Syphon Overflow Use Unknown

OTH	ER STRUCTUR	RES	
	Attenuation Tank Storage Tank Chamber		Tunnel Interce;

NON-PUBLIC SEWERS & PIPELINES

Private Sewer/Drain -----Culverted Watercourse Abandoned Sewer -----Status Unknown Section 104 - Foul ---> Section 104 - Surface Section 104 - Combined Private Rising Main Effluent Disposal Main

Information in this plan is provided for identification purposes only. No warranty as to accuracy is given or implied. The precise route of pipe work may not exactly match that shown. Wessex Water does not accept liability for inaccuracies.

liability for inaccuracies. Sewers and lateral drains adopted by Wessex Water under the Water Industry (Schemes for Adoption of Private Sewers) Regulations 2011 are to be plotted over time and may not yet be shown. In carrying out any works, you accept liability for the cost of any repairs to Wessex Water apparatus damaged as a result of your works. You are advised to commence excavations using hand tools only. Mechanical digging equipment should not be used until pipe work has been precisely located.

If you are considering any form of building works and pipe work is shown within the boundary of your property or a property to be purchased (or very close by) a surveyor should plot its exact position prior to commencing works or purchase. Building over or near Wessex Water's apparatus is not normally permitted.

Reproduced from the Ordnance Survey Map with the permission of the Controller of Her Majesty's Stationery Office. Crown copyright reserved, Licence No. 100019539.

Interceptor

Appendix B

Wessex Water correspondence

lee.aldridge

From:	Gillian Sanders [Gillian.Sanders@wessexwater.co.uk]
Sent:	15 February 2013 09:03
To:	lee.aldridge
Subject:	WW Resp Sewerage Improvements: Enquiry - Gillingham, Dorset Network Modelling arrangements

Lee,

Thank you for your email.

New development totals as described below in South Gillingham of circa 1800 dwellings, a school and 6.5ha employment land will generate significant foul flows in the Brickyard Lane catchment with a predicted risk of increased flooding and pollution. Wessex Water has undertaken an initial study to understand the scope of capacity improvements; these improvements will require confirmation and refinement by network modelling. Environmental screening has not been undertaken within the initial study.

Initial study suggests to mitigate against the extra foul flows, as described above, the following capacity improvements will be required:

Replace approximately 150m of existing 300mm diameter sewer with a 2m x 1m box culvert with a hydroslide to restrict pass forward flow.

Replace a further approximately 240m of existing 300mm diameter sewer with 375mm diameter sewer Construct a new 800m x 1600mm diameter attentuation pipe connected to the existing sewer with a bifurcation manhole

Provide additional capacity at Brickyard SPS

The capacity improvements as described have not been subject to environmental screening nor received necessary procedural approvement. Please regard the information as indicative subject to further network modelling. Please ensure the information is not transferred to the public domain without prior agreement from Wessex Water.

I can advise your understanding of water supply network modelling arrangements are correct.

Regards

Gillian Sanders

 Planning Liaison

 Phone:
 01225 526303

 Fax:
 01225 528000

 e-mail:
 gillian.sanders@wessexwater.co.uk

 Web:
 www.wessexwater.co.uk

-----Original Message----- **From:** lee.aldridge [mailto:lee.aldridge@wyg.com] **Sent:** 11 February 2013 11:15 **To:** Gillian Sanders **Cc:** richard.winn **Subject:** RE: Enquiry - Gillingham, Dorset Network Modelling arrangements

Gillian

We would be pleased to receive an outline foul sewer scheme as per your email below, for which we understand there is no cost. Please note, at this stage we have been instructed <u>not</u> to request any WW chargeable appraisal work.

We would be also be pleased to receive mains water supply details (point of connection, off site reinforcement requirements), for which we understand there is no cost. I have requested phasing details for the development and will forward once received.

Can you please confirm timescale for issue of the foul network information?

We understand the mains water supply will be provided 4 to 6 weeks from our confirmation of phasing.

I trust the above is satisfactory, if you need any further information please let me know.

Regards

Lee Aldridge Senior Civil Engineer

Tel: +44 (0)1623 684592

WYG Engineering Ltd. Registered in England number: 1959704. Registered Office: Arndale Court, Otley Road, Headingley, Leeds, West Yorkshire LS6 2UJ VAT No: 431-0326-08

From: Gillian Sanders [mailto:Gillian.Sanders@wessexwater.co.uk]
Sent: 07 February 2013 15:50
To: lee.aldridge
Cc: Dave Cherrett; Stuart Durant
Subject: RE: Enguiry - Gillingham, Dorset Network Modelling arrangements

Lee,

We can provide details of outline foul sewerage capacity improvements recommended to accomodate proposed development (DM1485928) which will need to be refined and developed by network modelling. Contribution for appraisal costs likely to be between £20 - £30K (off set against any scheme implemented to serve the sites). Our modelling programme is full until April, but I am happy to provide details of the indicative outline scheme.

Water Supply - Network modelling required to advise points of connection and off site re-inforcement. There is no cost for water supply modelling which can be instructed upon receipt of your phasing arrangements - modelling likely to take between 4 - 6 weeks to complete.

Regards

Gillian Sanders Planning Liaison

 Phone:
 01225 526303

 Fax:
 01225 528000

 e-mail:
 gillian.sanders@wessexwater.co.uk

 Web:
 www.wessexwater.co.uk

-----Original Message----- **From:** lee.aldridge [mailto:lee.aldridge@wyg.com] **Sent:** 05 February 2013 15:32 **To:** Gillian Sanders **Cc:** richard.winn **Subject:** Enquiry - Gillingham, Dorset

Gillian

Foul Drainage and Mains Water Supply Enquiry for Development Proposals at land in Gillingham, Dorset

WYG are engaged by CG Fry & Sons to prepare a Preliminary Infrastructure Appraisal for proposed development at land in Gillingham. The site is centred on OS grid ref: 381600, 125350, please refer to attached location plan. We understand that Wessex Water operate the foul sewer and mains water networks in this area.

The current masterplan (copy attached) comprises three separate areas for development summarised below: -

PARK FARM: 600 No new residential dwellings plus a new primary school (650 pupils & staff)

Description	Total No	Peak Foul Flow Rate	Assumptions
Residential	600 No Dwellings	27.8 l/s	4000 l/day per dwelling
Primary School	650 No persons	12.0 l/s	90 l/day per person

Description	Total No	Mains Water Demand	Assumptions
Residential	600 No Dwellings	7.62 l/s	146 l/day per person
Primary School	650 No persons	0.34 l/s	15 l/day per person

(assumed residential 2.5 No persons per dwelling with peak factor of 3, Primary School 8 hour day)

HAM FARM: 1200 No new residential dwellings

Description	Total No	Peak Foul Flow Rate	Assumptions
Residential	1200 No Dwellings	55.6 l/s	4000 l/day per dwelling

Description	Total No	Mains Water Demand	Assumptions	
Residential	1200 No Dwellings	15.24 l/s	146 l/day per person	

(assumed residential 2.5 No persons per dwelling with peak factor of 3)

LODEN LAKES: 6.5 ha commercial / industrial development land

Description	Total No	Peak Foul Flow Rate	Assumptions		
Class B2: General	3610 No persons	25.2 l/s	100 l/day per person		
(assumed 50% building floor area of 3.25 ha, population density 18 m ² per persons with 2 No shifts					
per day)					

Description	Total No	Mains Water Demand	Assumptions
Class B2: General	3610 No persons	1.90 l/s	45 l/day per person
Class B2: General	3610 No persons	1.90 //S	45 I/day per pers

(assumed 50% building floor area of 3.25 ha, population density 18 m^2 per persons with 2 No shifts per day)

Please can you confirm whether your existing networks within the vicinity of the site have sufficient capacity to receive the discharges from / provide the supply to the development areas and provide details of the nearest point of connection? Should hydraulic modelling of the existing system be required, can you please provide a fee proposal to undertake this work?

If off-site network reinforcement is necessary; please could you provide an indicative scope of work required including a budget cost estimate In addition, I would appreciate it if you could provide an indication of the likely number of properties that could be supplied before the off-site reinforcement is triggered.

I trust the above is satisfactory to proceed. Should you have any problems or wish to discuss please call.

Regards

Lee Aldridge

Senior Civil Engineer

WYG ENGINEERING LTD

Geneva Building, Lake View Drive, Sherwood Business Park, Annesley, Nottingham, NG15 0ED **Tel:** +44 (0)1623 684592

Claverton Down Bath BA2 7WW Telephone 01225 526000 www.wessexwater.co.uk

Colin Davidson colin.davidson@wyg.com Principal Engineer WYG, Geneva Building Annesley, Notts NG15 0ED

2 December 2015

Dear Colin,

Re: Gillingham Urban Extension; 1800 dwellings.

I refer to previous correspondence and agreement to scope the foul network modelling required for consideration of the impact of the predicted foul flows from major development at Gillingham upon the existing downstream public sewer network.

The proposed 1,800 residential "urban extension" sits in four areas (Appendix 1)

The Gillingham sewerage catchment consists of the conurbation which forms Gillingham, situated on the northern bank of the River Stour, together with Motcombe village which is 2km to the east.

The area is served by Common Mead Lane Sewage Treatment Works (STW, site i.d 13132).

The combined sewerage from the main sub-catchments discharge to two sewerage pumping stations; Buckingham SPS to the north and Brickyard Lane SPS to the south. Both SPS pump directly to the STW.

There is a small area of residential development immediately to the north of the STW, which drains by gravity direct to the inlet works.

There is an existing 300mm foul sewer which drains through the development site in two areas to Brickyard SPS. The 300mm sewer is up to 8m deep as it passes under a ridge towards Brickyard SPS.

As the size of the Brickyard SPS catchment is doubling with the proposed urban extension, significant new infrastructure will be required in addition to an EA permit review for Brickyard SPS operation.

Wessex Water Services Limited Registered office as above Registered in England No 2366648 Printed on 100% recycled paper Two options are currently proposed for further modelling appraisal and consideration;

Option 1 – "Business Plan Option" (Appendix 2)

Detailed appraisal of this option is required to consider its suitability for phasing arrangements within the urban extension. Possible reduction in previously recommended storage will be considered based upon improvements and consent reviews at Brickyard SPS and Gillingham STW.

Option 2 – "New SPS Option" (Appendix 3)

An alternative option is for a new SPS at the south-western corner of the urban extension to serve the entire development only. This is likely to include (excluding on site sewers):

- Constructing 1km of offsite new 225mm/300mm sewer (approximately 600 properties served = 27 l/s) 2-3m deep
- Constructing 0.5km of onsite new oversized 300mm sewer (approximately 850 properties served = 391/s)
- Construct new SPS, Pumping Rate = 40l/s (5xDWF), 9m deep, Storage Volume = 288m3 [9m shaft by 5m mobilised depth]
- Lay 800m of new 250mm rising main 1m deep discharging to Brickyard SPS (221mm internal @401/s = 1.043m/s)
- Construct new SPS wetwell at Brickyard SPS, with ~300m3 of storage.
- Uprate pumps at Brickyard SPS to discharge at 851/s, lay 400m of new 400mm rising main 1m deep discharging to STW Inlet Works (353mm internal @851/s = 0.869m/s) (dependent upon the capacity of the STW inlet which is to be determined)

In view of Gillingham Masterplan progression and commencement of the associated Infrastructure Delivery Plan Wessex Water will bring forward work on the Gillingham Drainage Area Plan. This will ensure that an up to date verified compute model is available to consider drainage options.

Internal approval will be sought within the next two weeks for the installation of a 32 monitor flow survey of Gillingham to verify a new hydraulic model of the catchment. The model can be used to consider the options as stated above and any alternatives evaluated during optioneering post model verification.

Assuming internal approval is gained the flow survey will take approximately 6 weeks to plan and install. Depending upon rainfall in the catchment (a minimum of three events required which need to meet specific criteria) the flow survey is likely to be installed for between 8-16 weeks. Once the data has been obtained and the model verified a meeting will be beneficial for an update on development proposals and agreement on modelling arrangements.

Whilst the flow survey is installed we can undertake other surveying specifically for development proposals. These will include manhole and pumping station surveys; the cost for the additional surveying for which a developer contribution will be required is £14,000. The total cost of the modelling for the development including optioneering, outline scheme and budget estimate will be £27,500 (+ vat). The £14,000 also includes the cost for 5 flow monitors out of the 32 monitors required. The cost for the DAP activities which will contribute to the main model build will be met by Wessex Water.

I trust our modelling / DAP proposals are acceptable and look forward to hearing how you plan to proceed.

Yours sincerely,

GCsuderf

Gillian Sanders Planning Liaison Developer Services <u>gillian.sanders@wessexwater.co.uk</u>

cc Mike Gale, Development Engineer

A Replace the existing 300mm diameter sewer (ST8126 8103 to ST8226 0101) with a 2.0m x 1.0m culvert over a length of approximately 150m.
Pass forward flow to be restricted at the downstream end to 40l/s via a hydro-slide or similar (developers of this area to provide adequate attenuation on site)
B Upsize the existing 300mm diameter sewer, between ST8125 4801 and ST8126 4102 (approximately 240m) to 375mm diameter.
C Form a bifurcation at manhole ST8125 3818 to divert excess flows from the existing sewer to a parallel 1600mm diameter attenuation pipe over 800m which will discharge to the wet well at the Brickyard Lane SPS

D Provide additional capacity to the wet well to the Brickyard Lane SPS – anticipated to be 6.0m diameter and 6.0m deep.

Gillingham SSA – Foul Drainage Strategy

Appendix C

Foul Drainage Strategy Plans A055606-001 and A055606-002

DO NOT SCALE: CONTRACTOR TO CHECK ALL DIMENSIONS AND REPORT ANY OMISSIONS OR ERRORS

GENERAL NOTES

- 1. DO NOT SCALE. ALL DIMENSIONS ARE IN MILLIMETRES
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT CONTRACT DRAWINGS
- 3. THE CONTRACTOR SHOULD SITE CHECK ALL EXISTING DIMENSIONS SHOWN. ANY DISCREPANCIES ON THIS DRAWING IDENTIFIED BY THE CONTRACTOR SHOULD BE BROUGHT TO THE ATTENTION OF THE ENGINEER <u>PRIOR</u> TO CONSTRUCTION ON SITE
- 4. THE CONTRACTOR SHALL CONFORM TO ALL STATUTORY AUTHORITY REQUIREMENTS, CHECKING WITH THE EMPLOYER/CLIENT TO IDENTIFY BOTH BELOW GROUND AND OVERHEAD SERVICES. CONTRACTOR TO FULLY COMPLY WITH ALL CDM, H&S AND PARTY WALL ACTS THAT ARE CURRENT. ALL BS REFERENCES ARE TO CURRENT EDITIONS.
- 5. ALL TEMPORARY WORKS FOR FORMWORK, EXCAVATIONS ETC., TO BE THE DESIGN RESPONSIBILITY OF THE CONTRACTOR.
- 6. ALL LEVELS ARE IN METRES (A.O.D.)

1	Residential									
	School site and indicative location of school building									
14.	Community building									
	Local centre option locations									
<	Employment									
	Sports provision									
	Informal open space									
	Attenuation basins									
	Allotments									
0	Children's play									
	Pedestrian links									

INDICATIVE

REV		DESCR	IPTION		BY	СНК	APP	DATE
CG F TAYL WELI	RY .OR WI 3ECK L	MPEY AND				•	<u> </u>	
GENEV LAKE V SHERW ANNES NG15 C TEL: e-mail:	A BUILDI IEW DRIV /OOD BUS LEY, NOT DED +44 (0) nottingh	NG, /E, SINESS PA) TINGHAMS 1623 684 5 am@wyg.o	RK, SHIRE 550 com				X	ð
Project GILL	: INGHAI	M SOUT	HERN	EXTEN	SION			
Drawin INID EAST	g Title: ICATIV 'ERN C.	E FOUL ATCHMI	DRAII ENT	NAGE S	TRATI	EGY		
Scale @ 1:1 Project	A1 000 No	Drawn TS 1	Date 5.11.16	Checked CD Drawing	Date 15.11.16 No	App C	proved D	Date 15.11.16 Revision
A05	55606	3 21	C	Diawing	001			-

20 40 60 80 100 m SCALE 1:2000

C WYG Group Ltd.

DO NOT SCALE: CONTRACTOR TO CHECK ALL DIMENSIONS AND REPORT ANY OMISSIONS OR ERRORS

GENERAL NOTES

- 1. DO NOT SCALE. ALL DIMENSIONS ARE IN MILLIMETRES
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT CONTRACT DRAWINGS
- 3. THE CONTRACTOR SHOULD SITE CHECK ALL EXISTING DIMENSIONS SHOWN. ANY DISCREPANCIES ON THIS DRAWING IDENTIFIED BY THE CONTRACTOR SHOULD BE BROUGHT TO THE ATTENTION OF THE ENGINEER <u>PRIOR</u> TO CONSTRUCTION ON SITE
- 4. THE CONTRACTOR SHALL CONFORM TO ALL STATUTORY AUTHORITY REQUIREMENTS, CHECKING WITH THE EMPLOYER/CLIENT TO IDENTIFY BOTH BELOW GROUND AND OVERHEAD SERVICES. CONTRACTOR TO FULLY COMPLY WITH ALL CDM, H&S AND PARTY WALL ACTS THAT ARE CURRENT. ALL BS REFERENCES ARE TO CURRENT EDITIONS.
- 5. ALL TEMPORARY WORKS FOR FORMWORK, EXCAVATIONS ETC., TO BE THE DESIGN RESPONSIBILITY OF THE CONTRACTOR.
- 6. ALL LEVELS ARE IN METRES (A.O.D.)

	Residential
	School site and indicative location of school building
4	Community building
5	Local centre option locations
1	Employment
	Sports provision
	Informal open space
	Attenuation basins
l l	Allotments
0	Children's play
1	Pedestrian links

INDICATIVE

	DESCRIPTION	
CG FRY		
TAYLOR	WIMPEY	
WELBEC	K LAND	
GENEVA BU	ILDING.	
LAKE VIEW	DRIVE, BUSINESS PARK	
ANNESLEY,	NOTTINGHAMSHIRE	wa.
NGI5 UED	(0) 1000 004 550	
e-mail: nott	ingham@wyg.com	
Project:		
CILLINC	μλω σωιτήσρη έντι	ENSION
GILLING	nam Southern eath	

INIDICATIVE FOUL DRAINAGE STRATEGY WESTERN CATCHMENT

Scale @ A1	Drawn	Date	Checked	Date	Approved	l Date
1:1000	TS	15.11.16	CD	15.11.16	CD	15.11.16
Project No.	Offic	e Type	Drawing	No.		Revision
A055606	i 21	l C		002		-

© WYG Group Ltd.

Gillingham SSA – Foul Drainage Strategy

Appendix D

MicroDrainage Network Details

WYG Group Limited		Page 1
•	Gillingham	
	Foul Drainage Strategy	L.
	Eastern Catchment	Micco
Date 26/04/2017 13:44	Designed by Tom Spawton	
File FOUL NETWORK 1 - REV A.MDX	Checked by Colin Davidson	Diamaye
XP Solutions	Network 2014.1	

User Report O:\Engineer\Projects A000000 to A999999\A055606 Gillingham Southern Extension\2016 Foul drainage strategy\Design Data\Network 1 Model Details.spdx for Foul - Main

PN USIL (m) DSIL (m) USCL (m) Length (m) Slope (1:X) Dia (mm) k (mm) Houses Base Flow (1/s)

F1.000	78.407	76.815	79.757	65.825	41.4	150	1.500	40	0.0
F1.001	76.815	76.286	78.165	79.439	150.0	150	1.500	52	0.0
F1.002	76.286	75.937	77.895	52.328	150.0	150	1.500	0	7.9
F2.000	75.709	75.234	77.059	71.167	150.0	150	1.500	35	0.0
F2.001	75.234	74.633	77.832	90.174	150.0	150	1.500	35	0.0
F1.003	74.558	73.305	78.063	127.273	101.6	225	1.500	0	0.0
F1.004	73.305	72.877	77.096	46.856	109.4	225	1.500	30	0.0
F1.005	72.877	72.488	77.808	44.372	113.9	225	1.500	20	0.0
F1.006	72.488	71.765	77.231	85.777	118.6	225	1.500	18	0.0
F1.007	71.765	71.227	77.472	63.735	118.6	225	1.500	0	0.0
F1.008	71.227	70.632	76.632	75.000	126.0	225	1.500	30	0.0
F1.009	70.632	70.004	76.034	84.150	133.9	225	1.500	30	0.0
F1.010	70.004	69.748	75.803	35.645	139.4	225	1.500	30	0.0
F3.000	73.356	73.097	74.706	38.786	150.0	150	1.500	13	0.0
F3.001	73.097	72.626	74.923	70.649	150.0	150	1.500	10	0.0
F3.002	72.626	72.221	75.051	60.730	150.0	150	1.500	10	0.0
F3.003	72.221	71.877	75.523	51.584	150.0	150	1.500	20	0.0
F3.004	71.877	71.765	75.330	16.913	150.0	150	1.500	10	0.0
F3.005	71.765	71.702	74.906	9.375	150.0	150	1.500	10	0.0
F3.006	71.702	71.230	74.713	70.791	150.0	150	1.500	11	0.0
F1.011	69.748	69.450	74.970	47.833	160.6	225	1.500	10	0.0
F1.012	69.450	68.844	74.294	97.375	160.6	225	1.500	0	0.0
F1.013	68.844	68.073	74.399	134.154	174.1	225	1.500	60	0.0
F1.014	68.073	67.652	74.000	78.025	185.0	225	1.500	60	0.0
F4.000	76.444	76.054	77.794	58.503	150.0	150	1.500	30	0.0
F4.001	76.054	75.339	77.963	107.202	150.0	150	1.500	25	0.0
F4.002	75.339	75.211	78.513	19.192	150.0	150	1.500	12	0.0
F4.003	75.211	74.944	78.283	40.086	150.0	150	1.500	0	0.0
F4.004	74.944	73.851	77.500	163.909	150.0	150	1.500	0	0.0
F4.005	73.851	72.919	75.917	139.847	150.0	150	1.500	15	0.0
F4.006	72.919	72.686	75.311	34.970	150.0	150	1.500	10	0.0

©1982-2014 XP Solutions

3:44 1 - REV A.MDX ngineer\Project Ases Σ Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7 100	s) US C.Depth (m) E .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	Gillin Foul 1 Easte: Design Checke Netwo: 9999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	ngham Drainage Strate rn Catchment ned by Tom Spawi ed by Colin Dav: ck 2014.1 5 Gillingham Sou rk 1 Results.sp Depth (mm) Pro Vel 28 60 118	gy ton idson <u>uthern Extension\201</u> <u>odx</u> @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	<u>16 Foul dra</u> e Vel (m/s) Ca 1.36 0.71 0.71	inage st p (1/s) Fl 24.1 12.6 12.6	Micro Drainage .rategy\Des .ow (1/s) 1.9 4.3
3:44 ngineer\Project ses Σ Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7	s) US C.Depth (m) E .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	Foul 1 Easte: Design Checke Netwo: 9999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	Drainage Strate rn Catchment ned by Tom Spawl ed by Colin Dav: rk 2014.1 5 Gillingham Sou rk 1 Results.sp Depth (mm) Pro Vel 28 60 118	gy ton idson <u>uthern Extension\201</u> odx @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	<u>16 Foul dra</u> e Vel (m/s) Ca 1.36 0.71 0.71	inage st p (1/s) F1 24.1 12.6 12.6	Micro Drainage .rategy\Des .ow (1/s) 1.9 4.3
3:44 1 - REV A.MDX ngineer\Project uses E Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7	s) US C.Depth (m) E .0 1.200 .0 1.200 .0 1.460 .0 1.200 .0 2.448	Easte: Design Checko Netwo: 0999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	rn Catchment ned by Tom Spawt ed by Colin Dav: rk 2014.1 5 Gillingham Sou rk 1 Results.sp Depth (mm) Pro Vel 28 60 118	ton idson uthern Extension\201 >dx @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	<u>16 Foul dra</u> e Vel (m/s) Ca 1.36 0.71 0.71	inage st p (1/s) F1 24.1 12.6 12.6	Micro Drainage .rategy\Des .ow (1/s) 1.9 4.3
3:44 1 - REV A.MDX ngineer\Project ses E Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7	s) US C.Depth (m) E .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	Design Checke Netwo: D999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	ned by Tom Spaw ed by Colin Dav: rk 2014.1 5 Gillingham Sou rk 1 Results.sp Depth (mm) Pro Vel 28 60 118	ton idson uthern Extension\201 odx @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	16 Foul dra e Vel (m/s) Ca 1.36 0.71 0.71	inage st p (1/s) F1 24.1 12.6 12 C	Micro Drainage .rategy\Des .ow (1/s) 1.9 4.3
3:44 1 - REV A.MDX ngineer\Project ses Σ Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7	s) US C.Depth (m) E .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	Design Checko Netwo: 9999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	hed by Iom Spaw ed by Colin Dav: rk 2014.1 5 Gillingham Sou rk 1 Results.sp Depth (mm) Pro Vel 28 60 118	ton idson uthern Extension\201 odx @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	16 Foul dra e Vel (m/s) Ca 1.36 0.71 0.71	<u>inage st</u> p (1/s) F1 24.1 12.6 12 C	Drainage .rategy\Des .ow (1/s) 1.9 4.3
1 - REV A.MDX ngineer\Project uses Σ Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7	s) US C.Depth (m) E .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	Checke Netwo: 0999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	ed by Colin Dav rk 2014.1 5 Gillingham Sou rk 1 Results.sp Depth (mm) Pro Vel 28 60 118	idson <u>uthern Extension\201</u> <u>odx</u> @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	16 Foul dra e Vel (m/s) Ca 1.36 0.71 0.71	inage st p (1/s) F1 24.1 12.6 12.6	.rategy\Des .ow (1/s) 1.9 4.3
ngineer\Project ses Σ Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7	s) US C.Depth (m) I .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	Netwo: 9999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	rk 2014.1 <u>5 Gillingham Sou</u> <u>rk 1 Results.sp</u> Depth (mm) Pro Vel 28 60 118 21	uthern Extension\201 odx @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	16 Foul dra e Vel (m/s) Ca 1.36 0.71 0.71	inage st p (1/s) F1 24.1 12.6	.rategy\Des .ow (1/s) 1.9 4.3
ngineer\Project ses Σ Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7 100 7	s) US C.Depth (m) E .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	999999\A055600 Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	6 Gillingham Sou rk 1 Results.sp Depth (mm) Pro Vel 28 60 118 2	uthern Extension\201 odx @1/3 Flow (m/s) Full Bord 0.57 0.47 0.64	<u>16 Foul dra</u> e Vel (m/s) Ca 1.36 0.71 0.71	inage st p (1/s) F1 24.1 12.6	.rategy\Des .ow (1/s) 1.9 4.3
Ases Σ Base Flow (1/ 40 0 92 0 92 7 35 0 70 0 162 7 100 7	<pre>s) US C.Depth (m) I .0</pre>	Data\Netwo Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	Depth (mm) Pro Vel 28 60 118 2	0dx @1/3 Flow (m/s) Full Bor 0.57 0.47 0.64	e Vel (m/s) Ca 1.36 0.71 0.71	p (1/s) F1 24.1 12.6	.ow (1/s) 1.9 4.3
40 0 92 0 92 7 35 0 70 0 162 7	s) US C.Depth (m) I .0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	Pro Vel (m/s) Pro 0.80 0.64 0.81 0.49	Depth (mm) Pro Vel	@1/3 Flow (m/s) Full Bor 0.57 0.47 0.64	e Vel (m/s) Ca 1.36 0.71 0.71	p (1/s) F1 24.1 12.6	.ow (1/s) 1.9 4.3
40 0 92 0 92 7 35 0 70 0 162 7	.0 1.200 .0 1.200 .9 1.460 .0 1.200 .0 2.448	0.80 0.64 0.81 0.49	28 60 118	0.57 0.47 0.64	1.36 0.71 0.71	24.1 12.6	1.9 4.3
92 0 92 7 35 0 70 0 162 7	.0 1.200 .9 1.460 .0 1.200 .0 2.448	0.64 0.81 0.49	60 118	0.47	0.71	12.6	4.3
92 7 35 0 70 0 162 7	.9 1.460 .0 1.200 .0 2.448	0.81	118	0.64	0.71	10 0	• •
35 0 70 0 162 7	.0 1.200 .0 2.448	0.49				12.0	12.2
70 0 162 7 100	.0 2.448		36	0.35	0.71	12.6	1.6
162 7		0.60	52	0.43	0.71	12.6	3.2
100 7	.9 3.280	1.03	90	0.75	1.14	45.3	15.4
192 /	.9 3.566	1.03	97	0.75	1.10	43.6	16.8
212 7	.9 4.706	1.02	101	0.75	1.08	42.7	17.7
230 7	.9 4.518	1.02	105	0.75	1.05	41.9	18.5
230 7	.9 5.482	1.02	105	0.75	1.05	41.9	18.5
260 7	.9 5.180	1.02	111	0.75	1.02	40.6	19.9
290 7	.9 5.176	1.01	118	0.75	0.99	39.4	21.3
320 7	.9 5.575	1.01	124	0.75	0.97	38.6	22.7
13 0	.0 1.200	0.36	23	0.25	0.71	12.6	0.6
23 0	.0 1.675	0.43	30	0.31	0.71	12.6	1.1
33 0	.0 2.274	0.48	35	0.34	0.71	12.6	1.5
53 0	.0 3.152	0.55	45	0.40	0.71	12.6	2.5
63 0	.0 3.303	0.58	49	0.42	0.71	12.6	2.9
73 0	.0 2.991	0.60	53	0.44	0.71	12.6	3.4
84 0	.0 2.861	0.63	57	0.46	0.71	12.6	3.9
414 7	.9 4.997	0.99	146	0.75	0.90	36.0	27.0
414 7	.9 4.619	0.99	146	0.75	0.90	36.0	27.0
474 7	.9 5.330	0.98	161	0.75	0.87	34.5	29.8
534 7	.9 5.701	0.96	180	0.75	0.84	33.5	32.6
30 0	.0 1.200	0.47	34	0.33	0.71	12.6	1.4
55 0	.0 1.759	0.56	46	0.40	0.71	12.6	2.5
67 0	.0 3.024	0.59	51	0.43	0.71	12.6	3.1
67 0	.0 2.921	0.59	51	0.43	0.71	12.6	3.1
67 0	.0 2.406	0.59	51	0.43	0.71	12.6	3.1
82 0	.0 1.916	0.62	56	0.45	0.71	12.6	3.8
92 0	.0 2.242	0.64	60	0.47	0.71	12.6	4.3
2 2 2 3 4 4 4 5	30 7 60 7 90 7 20 7 13 0 23 0 33 0 53 0 63 0 73 0 84 0 14 7 74 7 30 0 55 0 67 0 82 0 92 0	30 7.9 5.482 60 7.9 5.180 90 7.9 5.176 20 7.9 5.575 13 0.0 1.200 23 0.0 1.675 33 0.0 2.274 53 0.0 3.152 63 0.0 3.03 73 0.0 2.991 84 0.0 2.861 14 7.9 4.619 74 7.9 5.330 34 7.9 5.701 30 0.0 1.200 55 0.0 1.759 67 0.0 2.921 67 0.0 2.921 67 0.0 2.406 82 0.0 1.916 92 0.0 2.242	30 7.9 5.482 1.02 60 7.9 5.180 1.02 90 7.9 5.176 1.01 20 7.9 5.575 1.01 13 0.0 1.200 0.36 23 0.0 1.675 0.43 33 0.0 2.274 0.48 53 0.0 3.152 0.55 63 0.0 2.991 0.60 84 0.0 2.861 0.63 14 7.9 4.997 0.99 14 7.9 5.330 0.98 34 7.9 5.701 0.96 30 0.0 1.200 0.47 55 0.0 1.759 0.56 67 0.0 2.921 0.59 67 0.0 2.406 0.59 82 0.0 1.916 0.62 92 0.0 2.242 0.64	307.95.4821.02105 60 7.95.1801.02111 90 7.95.1761.01118 20 7.95.5751.01124 13 0.01.2000.3623 23 0.01.6750.4330 33 0.02.2740.4835 53 0.03.1520.5545 63 0.02.9910.6053 84 0.02.8610.6357 14 7.94.6190.99146 74 7.95.3300.98161 34 7.95.7010.96180 30 0.01.2000.4734 55 0.01.7590.5646 67 0.02.9210.5951 67 0.02.9210.5951 67 0.02.4060.5951 82 0.01.9160.6256 92 0.02.2420.6460	307.95.4821.021050.75 60 7.95.1801.021110.75 90 7.95.5751.011180.75 13 0.01.2000.36230.25 23 0.01.6750.43300.31 33 0.02.2740.48350.34 53 0.03.1520.55450.40 63 0.02.9910.60530.42 73 0.02.9910.60530.44 84 0.02.8610.63570.46 14 7.94.6190.991460.75 14 7.95.3300.981610.75 34 7.95.7010.961800.75 34 7.95.7010.55460.40 67 0.03.0240.59510.43 67 0.02.9210.59510.43 67 0.02.9210.59510.43 67 0.02.2420.64600.47	30 7.9 5.482 1.02 105 0.75 1.05 60 7.9 5.180 1.02 111 0.75 1.02 90 7.9 5.575 1.01 124 0.75 0.99 20 7.9 5.575 1.01 124 0.75 0.97 13 0.0 1.200 0.36 23 0.25 0.71 23 0.0 1.675 0.43 30 0.31 0.71 53 0.0 3.152 0.55 45 0.40 0.71 63 0.0 2.274 0.60 53 0.44 0.71 53 0.0 3.033 0.58 49 0.42 0.71 64 0.0 2.861 0.63 57 0.466 0.71 84 0.0 2.861 0.63 57 0.466 0.71 14 7.9 4.619 0.99 146 0.75 0.90 74 7.9 5.701 0.96 180 0.75 0.87	30 7,9 5.482 1.02 105 0.75 1.05 41.9 60 7.9 5.180 1.02 111 0.75 1.02 40.6 90 7.9 5.575 1.01 118 0.75 0.99 39.4 20 7.9 5.575 1.01 124 0.75 0.97 38.6 13 0.0 1.675 0.43 30 0.31 0.71 12.6 33 0.0 2.274 0.48 35 0.34 0.71 12.6 53 0.0 3.152 0.55 45 0.40 0.71 12.6 63 0.0 3.303 0.58 49 0.42 0.71 12.6 73 0.0 2.991 0.60 53 0.44 0.71 12.6 84 0.0 2.991 0.60 53 0.44 0.71 12.6 74 7.9 4.619 0.99 146 0.75 0.90 36.0 74 7.9 5.701 0.96 180

©1982-2014 XP Solutions

YG Group Limited											Page 1
					Gillingh	am					
					Foul Dra	inage Str	ategy				4
					Western	Catchment	1				~~~
ate 26/04/2017 13.56					Designed by C Davidson						MICIO
CILINGUAM NETHODY	0 F		37		Charles	be n Coo	v LUSOI.	1			Drainage
ILE GILLINGHAM NETWORK	2 – F	(EV A.MD	X		Checked	by p. Spa	rnam				Brainlage
P Solutions					Network	2014.1					
User Report O:\Engine	er\Pr	ojects	A000000	to A99	9999\A05560)6 Gilling	nam So	outher	n Extensi	lon∖2016 Foul d	rainage strategy
			\Design	Data\N	etwork 2 Mc	del Detai	ls.spo	dx for	Storm		
	את	HCTT (m)	DOTT (m)		Ionath (m) Cl	ama (1.V) Di	ia (mm)	la (mm)	Newson Done	Flow (1/a)	
	FN	0511 (11)	DSTE (III)	03CL (III)	Lengen (m) SI	оре (1.Х) Ы	La (IIIII)	K (IIIII)	nouses base	: FIOW (1/S)	
	5.000	80.825	78.378	82.250	62.872	25.7	225	1.500	626	7.9	
	5.001	78.378	77.164	79.803	54.399	44.8	225	1.500	0	0.0	
	5.002	77.164	76.575	78.589	34.537	58.6	225	1.500	0	0.0	
	5.003	76.575	76.324	78.000	33.009	131.4	225	1.500	0	0.0	
	5.004	76.324	75.705	77.750	81.361	131.4	225	1.500	0	0.0	
	5.005	75.705	75.456	77.733	32.657	131.4	225	1.500	0	0.0	
	5.006	75.456	75.048	77.624	53.555	131.4	225	1.500	0	2.9	
	5.007	75.048	74.184	77.932	96.668	111.8	225	1.500	70	0.0	
	5.008	74.184	73.389	78.394	88.780	111.8	225	1.500	0	0.0	
	5.009	73.389	72.600	78.500	88.200	111.8	225	1.500	0	0.0	
	5.010	72.600	71.795	78.270	86.463	107.4	225	1.500	20	0.0	
	5.011	71.720	71.355	76.548	69.234	189.8	300	1.500	20	0.0	
	5.012	71.355	71.173	74.681	34.682	189.8	300	1.500	20	0.0	
	5.013	71.173	70.914	74.405	49.134	189.8	300	1.500	20	0.0	
	5.014	70.914	70.584	74.286	62.542	189.8	300	1.500	0	0.0	
	5.015	70.584	70.306	72.502	52.815	189.8	300	1.500	20	0.0	
	5.016	70.306	69.985	72.124	60.875	189.8	300	1.500	20	0.0	
	5.017	69.985	67.700	71.721	58.787	25.7	300	1.500	19	0.0	
	6.000	79.630	78.421	80.930	53.276	44.1	150	1.500	30	0.0	
	6.001	78.421	77.568	79.796	54.524	63.9	150	1.500	65	0.0	
	6.002	77.568	75.642	78.918	58.530	30.4	150	1.500	0	7.9	
	6.003	75.642	74.866	76.992	59.097	76.2	150	1.500	18	0.0	
	6.004	74.866	73.886	76.670	43.864	44.8	150	1.500	36	0.0	
	6.005	73.886	71.046	75.236	85.849	30.2	150	1.500	30	0.0	
	6.006	71.046	70.251	72.396	60.404	76.0	150	1.500	30	0.0	
				70 000	21 505	76.0	150	1.500	0	0.0	
	6.007	70.251	69.836	12.228	51.595						
	6.007 6.008	70.251 69.761	69.836 68.464	72.228	167.448	129.1	225	1.500	160	0.0	

Date 26/04/2017 13:56					Gillin Foul D	gham rainage St	matagu				
Date 26/04/2017 13:56					Foul D	rainage St	mat a gri				
ate 26/04/2017 13:56						rarnage be.	rategy				
ate 26/04/2017 13:56					Wester	n Catchmen	t				- Com
					Design	ed by C. Da	avidsor	1			
ile GILLINGHAM NETWORK 2	– R	EV A MD	X		Checke	d by p. Sp;	arham				Drainage
P Solutions	1				Networ	k 201/ 1					
F SOLUCIONS					Networ	K 2014.1					
User Report O.\Engineer	r\Pr	ojects	A000000	to A99	9999\A055	606 Gillin	gham So	outher	n Extensio	n\2016 Foul	drainage strategy
		0] 0 0 0	\Design	Data\N	etwork 2	Model Deta	ils.sp	dx for	Storm	<u> </u>	ararinage beraeegy
			(2001911	2404 (1	001101111	110401 2004	110.010		00011		
	PN	USIL (m)	DSIL (m)	USCL (m)	Length (m)	Slope (1:X) I	Dia (mm)	k (mm)	Houses Base	Flow (l/s)	
6	.010	68.068	67.775	71.624	37.879	129.1	225	1.500	18	0.0	
7	.000	78.449	77.203	79.749	54.925	44.1	150	1.500	28	0.0	
7	001	77.203	76.401	79.203	60.527	75.5	150	1.500	28	0.0	
7	.002	76.401	75.941	79.030	34.759	75.5	150	1.500	0	0.0	
7	.003	75.941	75.480	79.278	34.759	75.5	150	1.500	0	0.0	
7	.004	75.480	74.754	79.248	54.826	75.5	150	1.500	15	0.0	
7	.005	74.754	74.029	77.927	54.710	75.5	150	1.500	15	0.0	
7	.006	74.029	72.386	75.609	55.367	33.7	150	1.500	15	0.0	
7	.007	72.386	67.850	73.736	76.649	16.9	150	1.500	0	0.0	
5	0.018	67.625	67.290	71.349	84.433	251.9	3/5	1.500	/	0.0	
5	.019	67.290	67.093	70 252	49.613	251.9	3/5	1.500	48	0.0	
5	0.020	67.093	66 573	70.203	49.513 81 281	251.9	375	1.500	12	0.0	
	021	66 573	66 096	70.965	120 199	251.9	375	1 500	18	0.0	
	022	66 096	65 936	70.003	40 452	251.9	375	1 500	18	0.0	
	5.024	65.936	65.723	71.255	53,591	251.9	375	1.500	0	0.0	
5	6.025	65.723	65.384	71.215	85.237	251.9	375	1.500	62	0.0	
5	5.026	65.384	65.274	70.350	27.793	251.9	375	1.500	11	0.0	
5	.027	65.274	64.684	70.379	148.680	251.9	375	1.500	11	0.0	
8	3.000	70.816	68.816	72.166	54.405	27.2	150	1.500	30	0.0	
8	8.001	68.816	68.344	70.834	70.771	150.0	150	1.500	30	0.0	
8	3.002	68.344	67.976	70.750	55.270	150.0	150	1.500	30	0.0	
8	8.003	67.976	67.396	71.000	87.057	150.0	150	1.500	0	0.0	
8	8.004	67.396	66.838	70.616	83.633	150.0	150	1.500	47	0.0	
8	8.005	66.838	66.165	69.500	64.624	96.0	150	1.500	46	0.0	
8	3.006	66.165	65.545	70.542	47.624	76.8	150	1.500	0	0.0	
g	8.007	65.545	64.660	69.698	67.978	76.8	150	1.500	23	0.0	

WYG Group	Limited							Page	3	
				G	illingham					
				F	oul Drainage	Strategy		C		
				We	estern Catch	ment			- Um	
Date 26/04	te 26/04/2017 13:56 Designed by C. Davidson									
File CILL	le CILLINCHAM NETWORK 2 - REV A MDY Checked by p Sparham									
VD Geluti		EIWORK Z - RE	V A.MDA		tecked by p.					
XP Solutio	ons			ING	etwork 2014.	<u> </u>				
Ucon De	anant o.	\Engineen\Dre		+ ~ 700000	\ 7055606 C;1	lingham Couthown Fr	toncion 2016 Foul d	nainage	a at mat a gru	
USEL RE	eport U:	(Eligineer (Pro	Jects A000000	\Design Da	ta\Network 2	Results.spdx	cension(2016 Four d	rainage	<u>s strategy</u>	
PN	Σ Houses	s Σ Base Flow (1/	s) US C.Depth (m)	Pro Vel (m/s)	Pro Depth (mm)	Pro Vel @1/3 Flow (m/s)	Full Bore Vel (m/s) Cap	(l/s) Flo	ow (l/s)	
5.00	00 626	6 7	.9 1.200	2.16	100	1.59	2.27	90.2	36.9	
5.00	01 626	5 7	.9 1.200	1.75	118	1.30	1.72	68.3	36.9	
5.00	02 626	5 7	.9 1.200	1.58	128	1.18	1.50	59.7	36.9	
5.00	03 626	5 7	.9 1.200	1.13	171	0.88	1.00	39.8	36.9	
5.00	04 626	5 7	.9 1.201	1.13	171	0.88	1.00	39.8	36.9	
5.00	05 626	5 7	.9 1.804	1.13	171	0.88	1.00	39.8	36.9	
5.00	06 626	5 10	.8 1.943	1.14	185	0.90	1.00	39.8	39.8	
5.00	07 696	5 10	.8 2.658	1.24	184	0.98	1.09	43.2	43.0	
5.00	08 696	5 10	.8 3.985	1.24	184	0.98	1.09	43.2	43.0	
5.00	09 696	5 10	.8 4.886	1.24	184	0.98	1.09	43.2	43.0	
5.03	10 716	5 10	.8 5.444	1.26	184	1.00	1.11	44.0	43.9	
5.03	11 736	5 10	.8 4.528	1.06	173	0.80	1.01	71.1	44.8	
5.03	12 756	5 10	.8 3.026	1.07	175	0.80	1.01	71.1	45.8	
5.03	13 776	5 10	.8 2.932	1.07	177	0.81	1.01	71.1	46.7	
5.03	14 776	5 10	.8 3.072	1.07	177	0.81	1.01	71.1	46.7	
5.03	15 796	5 10	.8 1.617	1.08	180	0.81	1.01	71.1	47.6	
5.03	16 816	5 10	.8 1.518	1.08	182	0.82	1.01	71.1	48.5	
5.03	17 835	5 10	.8 1.435	2.30	103	1.68	2.74	L93.7	49.4	
6.00	00 30	0 C	.0 1.150	0.72	25	0.51	1.32	23.4	1.4	
6.00	01 95	5 0	.0 1.225	0.89	49	0.64	1.10	19.4	4.4	
6.00	02 95	5 7	.9 1.200	1.54	69	1.13	1.59	28.2	12.3	
6.00	03 113	3 7	.9 1.200	1.10	96	0.83	1.00	17.8	13.1	
6.00	04 149	9 7	.9 1.654	1.39	87	1.04	1.31	23.2	14.8	
6.00	05 179	9 7	.9 1.200	1.65	81	1.23	1.60	28.2	16.2	
6.00	06 209	9 7	.9 1.200	1.15	121	0.90	1.01	17.8	17.6	
6.00	07 209	9 7	.9 1.827	1.15	121	0.90	1.01	17.8	17.6	
6.00	08 369	9 7	.9 1.833	1.06	129	0.80	1.01	40.1	25.0	
6.00	09 435	5 7	.9 2.420	1.09	138	0.82	1.01	40.1	28.0	
				©198	2-2014 XP So	lutions				
				2100						

-	Group Limited								Page 4	
				Gillir	ngham				-	
				Foul I	Foul Drainage Strategy				1	
				Wester	Western Catchment				m	
· 	017 12.56			Degigr	Designed by C. Davidson				AICTO	
Jale 20/04/20	01/ 13:36	_		Desigi	Checked by p. Sparham Network 2014.1				cainage	
File GILLING	HAM NETWORK	2 – REV A.MI	XC	Checke					brainiage	
XP Solutions				Networ						
User Repor	rt O:\Engin	eer\Projects	A000000 to	A9999999\A05!	5606 Gillingham	. Southern Extensio	on\2016 Foul	drainag	e strategy	
	<u> </u>			sign Data\Ne	etwork 2 Result	zs.spdx		<u>ararnag</u>	<u> </u>	
	Houses 7 Page	Flow (1/a) US C	Dooth (m) Bro	Vol (m/g) Pro l	Dopth (mm) Pro Vol	$(1/2 \ \text{Flow} \ (m/a) \ \text{Full} \ \text{Po}$	r_{0} V_{0} (m/a) C_{0}	vp (1/a) F1	ow (1/a)	
FN Z	nouses 2 base	: FIOW (1/S) 03 C		Ver (m/s) FIO	Depth (mm) FIO Ver	GI/S FIOW (M/S) FUIL BO	ie vei (m/s) ca	ıp (1/5) fl	0w (1/5)	
6.010	453	7.9	3.330	1.10	141	0.83	1.01	40.1	28.9	
7.000	28	0.0	1.150	0.70	24	0.50	1.32	23.4	1.3	
7.001	56 E.C	0.0	1.850	0.71	39	0.51	1.01	17.8	2.6	
7.002	56 56	0.0	2.479	0.71	39	0.51	1.01	17.8	2.6	
7.003	71	0.0	2.10/	0.71	39	0.51	1.01	17.0	2.0	
7.004	71	0.0	3.010	0.77	44	0.55	1.01	17.0	1.0	
7.005	101	0.0	1 420	1 12	40	0.58	1 51	26 7	4.0	
7.000	101	0.0	1 200	1.15	42	1 03	2 14	20.7	4.7	
5 018	1396	18 7	3 349	1.45	242	0.84	1 01	111 4	4.7 83 3	
5.019	1444	18 7	4 554	1 11	247	0.85	1 01	111 4	85.5	
5 020	1456	18 7	2 785	1 11	248	0.85	1 01	111 4	86.0	
5.020	1471	18.7	3.429	1.11	249	0.85	1.01	111.4	86.7	
5.022	1489	18.7	3,916	1.11	251	0.85	1.01	111.4	87.6	
5.023	1507	18.7	4.307	1.12	253	0.85	1.01	111.4	88.4	
5.024	1507	18.7	4.944	1.12	253	0.85	1.01	111.4	88.4	
5.025	1569	18.7	5.117	1.12	259	0.86	1.01	111.4	91.3	
5.026	1580	18.7	4.590	1.12	260	0.86	1.01	111.4	91.8	
5.027	1591	18.7	4.730	1.12	261	0.86	1.01	111.4	92.3	
8.000	30	0.0	1.200	0.85	22	0.60	1.68	29.8	1.4	
0 001	60	0.0	1.868	0.57	48	0.41	0.71	12.6	2.8	
8.001	90	0.0	2.256	0.64	59	0.47	0.71	12.6	4.2	
8.001		0.0	2.874	0.64	59	0.47	0.71	12.6	4.2	
8.001 8.002 8.003	90	0.0		0 70	75	0.53	0.71	12.6	6.3	
8.001 8.002 8.003 8.004	90 137	0.0	3.070	0.72						
8.001 8.002 8.003 8.004 8.005	90 137 183	0.0	3.070 2.512	0.72	78	0.67	0.89	15.8	8.5	
8.001 8.002 8.003 8.004 8.005 8.006	90 137 183 183	0.0 0.0 0.0	3.070 2.512 4.227	0.72 0.91 0.99	78 73	0.67 0.73	0.89	15.8 17.7	8.5 8.5	

Appendix E

Terence O' Rourke Density Plan and Phasing Plan

Phasing plan